Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 306-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Relations existing between Korteveg–de Vries equation, Virasoro algebra and Kac–Moody algebra sl(2)$^{\wedge}$ make it possible to construct an integrable superquation, which represents an analogue of Korteveg–de Vries equation for the Neveu–Schwarz-2 superalgebra by means of the hamiltonian reduction method from the Kac–Moody algebra sl(2|1)$^{\wedge}$.
@article{TMF_1987_72_2_a13,
     author = {T. G. Khovanova},
     title = {Korteweg{\textendash}de~Vries superequation related to the {Lie} superalgebra of {Neveu-Schwarz-2} string theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {306--312},
     year = {1987},
     volume = {72},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a13/}
}
TY  - JOUR
AU  - T. G. Khovanova
TI  - Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 306
EP  - 312
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a13/
LA  - ru
ID  - TMF_1987_72_2_a13
ER  - 
%0 Journal Article
%A T. G. Khovanova
%T Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 306-312
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a13/
%G ru
%F TMF_1987_72_2_a13
T. G. Khovanova. Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 72 (1987) no. 2, pp. 306-312. http://geodesic.mathdoc.fr/item/TMF_1987_72_2_a13/

[1] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys., B241:6 (1984), 333–362 | DOI | MR

[2] Kirillov A. A., Funkts. analiz i ego prilozh., 15:2 (1981), 75–76 | MR | Zbl

[3] Kupershmidt B. A., Phys. Lett., 109A:9 (1985), 417–423 | DOI | MR

[4] Khovanova T. G., Group-Theoretical Methods in Physics, Proc. of the 3-th Seminar (Urmala, May, 1985), VHU. B. V, Holland, 1986, 261–267

[5] Drinfeld V. G., Sokolov V. V., Sovr. probl. matem., 24, VINITI, M., 1984, 81–180 | MR

[6] Khovanova T. G., Funkts. analiz i ego prilozh., 20:4 (1986), 89–90 | MR | Zbl

[7] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[8] Zamolodchikov A. B., TMF, 65:3 (1985), 347–359 | MR

[9] Khovanova T. G., Funkts. analiz i ego prilozh., 20:2 (1986), 88–89 | MR | Zbl

[10] Kupershmidt B. A., Proc. Roy. Irish Acad., 83A:1 (1983), 45–74 | MR | Zbl

[11] Gelfand I. M., Dorfman I. Ya., Funkts. analiz i ego prilozh., 15:3 (1981), 23–40 | MR | Zbl