Investigation of gauge ambiguity by means of the theory of harmonic maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421
Voir la notice de l'article provenant de la source Math-Net.Ru
For the non-abelian gauge field theory with the gauge group $G=SU(2)$, $SO(4)$,
$SU(3)$ in $n=2$ or $n=4$ dimension some infinite-dimensional and (in the case of
$G=SU(3)$) some finite-dimensional sets of potentials $A_{\mu}=g^{-1}\partial_{\mu}g$ satisfying the gauge
condition $\partial_{\mu}A_{\mu}=0$ are found in an explicit form. The number of dimensions of the
intersection of the orbit $A_{\mu}=g^{-1}\partial_{\mu}g$ with the surface $\partial_{\mu}A_{\mu}=0$ is discussed.
@article{TMF_1987_70_3_a8,
author = {M. Yu. Logachev},
title = {Investigation of gauge ambiguity by means of the theory of harmonic maps},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {412--421},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/}
}
M. Yu. Logachev. Investigation of gauge ambiguity by means of the theory of harmonic maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421. http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/