Investigation of gauge ambiguity by means of the theory of harmonic maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421

Voir la notice de l'article provenant de la source Math-Net.Ru

For the non-abelian gauge field theory with the gauge group $G=SU(2)$, $SO(4)$, $SU(3)$ in $n=2$ or $n=4$ dimension some infinite-dimensional and (in the case of $G=SU(3)$) some finite-dimensional sets of potentials $A_{\mu}=g^{-1}\partial_{\mu}g$ satisfying the gauge condition $\partial_{\mu}A_{\mu}=0$ are found in an explicit form. The number of dimensions of the intersection of the orbit $A_{\mu}=g^{-1}\partial_{\mu}g$ with the surface $\partial_{\mu}A_{\mu}=0$ is discussed.
@article{TMF_1987_70_3_a8,
     author = {M. Yu. Logachev},
     title = {Investigation of gauge ambiguity by means of the theory of harmonic maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {412--421},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/}
}
TY  - JOUR
AU  - M. Yu. Logachev
TI  - Investigation of gauge ambiguity by means of the theory of harmonic maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 412
EP  - 421
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/
LA  - ru
ID  - TMF_1987_70_3_a8
ER  - 
%0 Journal Article
%A M. Yu. Logachev
%T Investigation of gauge ambiguity by means of the theory of harmonic maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 412-421
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/
%G ru
%F TMF_1987_70_3_a8
M. Yu. Logachev. Investigation of gauge ambiguity by means of the theory of harmonic maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421. http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/