Investigation of gauge ambiguity by means of the theory of harmonic maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421
Cet article a éte moissonné depuis la source Math-Net.Ru
For the non-abelian gauge field theory with the gauge group $G=SU(2)$, $SO(4)$, $SU(3)$ in $n=2$ or $n=4$ dimension some infinite-dimensional and (in the case of $G=SU(3)$) some finite-dimensional sets of potentials $A_{\mu}=g^{-1}\partial_{\mu}g$ satisfying the gauge condition $\partial_{\mu}A_{\mu}=0$ are found in an explicit form. The number of dimensions of the intersection of the orbit $A_{\mu}=g^{-1}\partial_{\mu}g$ with the surface $\partial_{\mu}A_{\mu}=0$ is discussed.
@article{TMF_1987_70_3_a8,
author = {M. Yu. Logachev},
title = {Investigation of gauge ambiguity by means of the theory of harmonic maps},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {412--421},
year = {1987},
volume = {70},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/}
}
M. Yu. Logachev. Investigation of gauge ambiguity by means of the theory of harmonic maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 412-421. http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a8/
[1] Gribov V. N., Nucl. Phys., B139:1–2 (1978), 1–19 | DOI | MR
[2] Singer I. M., Commun. Math. Phys., 60 (1978), 7–12 | DOI | MR | Zbl
[3] Niemi A., Phys. Lett., B91 (1980), 411–414 | DOI
[4] Ghika G., Visinescu M., Phys. Rev., D21:6 (1980), 1538–1542 | MR
[5] Eells J., Lemaire L., Bull. London Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl
[6] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR
[7] Jackiw R., Muzinich I., Rebbi C., Phys. Rev., D17:6 (1978), 1576–1582 | MR
[8] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949
[9] Solovev M. A., Pisma v ZhETF, 38:8 (1983), 415–417
[10] Ademollo M., Napolitano E., Sciuto S., Nucl. Phys., B134:3 (1978), 477–494 | DOI