Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314
Voir la notice de l'article provenant de la source Math-Net.Ru
Miura transform between the solutions of KdF and MKdF equations is extended
to the two-dimensional case. An integrable equation connected with the two-dimensional
Dirac operator – modified Vesselov–Novikov equation – is introduced.
@article{TMF_1987_70_2_a14,
author = {L. V. Bogdanov},
title = {Veselov--Novikov equation as a~natural two-dimensional generalization of the {Korteweg--de~Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--314},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/}
}
TY - JOUR AU - L. V. Bogdanov TI - Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 309 EP - 314 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/ LA - ru ID - TMF_1987_70_2_a14 ER -
%0 Journal Article %A L. V. Bogdanov %T Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation %J Teoretičeskaâ i matematičeskaâ fizika %D 1987 %P 309-314 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/ %G ru %F TMF_1987_70_2_a14
L. V. Bogdanov. Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/