Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314
Cet article a éte moissonné depuis la source Math-Net.Ru
Miura transform between the solutions of KdF and MKdF equations is extended to the two-dimensional case. An integrable equation connected with the two-dimensional Dirac operator – modified Vesselov–Novikov equation – is introduced.
@article{TMF_1987_70_2_a14,
author = {L. V. Bogdanov},
title = {Veselov{\textendash}Novikov equation as a~natural two-dimensional generalization of the {Korteweg{\textendash}de~Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--314},
year = {1987},
volume = {70},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/}
}
TY - JOUR AU - L. V. Bogdanov TI - Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg–de Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 309 EP - 314 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/ LA - ru ID - TMF_1987_70_2_a14 ER -
L. V. Bogdanov. Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/
[1] Veselov A. P., Novikov S. P., DAN SSSR, 279:4 (1984), 784–788 | MR | Zbl
[2] Manakov S. V., UMN, 31:5 (1976), 245–246 | MR | Zbl
[3] Grinevich P. G., Manakov S. V., Funkts. analiz i ego prilozh., 20:2 (1986), 14–24 | MR | Zbl
[4] Zakharov V. E., Manakov S. V., Funkts. analiz i ego prilozh., 19:2 (1985), 11–25 | MR
[5] Zakharov V. E., Shabat A. B., Funkts. analiz i ego prilozh., 8:3 (1974), 43–53 | MR | Zbl