Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314

Voir la notice de l'article provenant de la source Math-Net.Ru

Miura transform between the solutions of KdF and MKdF equations is extended to the two-dimensional case. An integrable equation connected with the two-dimensional Dirac operator – modified Vesselov–Novikov equation – is introduced.
@article{TMF_1987_70_2_a14,
     author = {L. V. Bogdanov},
     title = {Veselov--Novikov equation as a~natural two-dimensional generalization of the {Korteweg--de~Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--314},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/}
}
TY  - JOUR
AU  - L. V. Bogdanov
TI  - Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 309
EP  - 314
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/
LA  - ru
ID  - TMF_1987_70_2_a14
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%T Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 309-314
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/
%G ru
%F TMF_1987_70_2_a14
L. V. Bogdanov. Veselov--Novikov equation as a~natural two-dimensional generalization of the Korteweg--de~Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 309-314. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a14/