Particle capture by a slowly varying periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 401-414
Cet article a éte moissonné depuis la source Math-Net.Ru
Particle capture by a slowly varying one-dimensional periodic potential is studied by the method of averaging [1]. For large time intervals $t\sim 1/\alpha$ ($\alpha$ is the small parameter which characterizes the rate of change of the potential), including the point of intersection of the separatrix, the solution is constructed up to the first correction terms of order relative to the leading term. The increment $\Delta I$ of the action in a complete evolution interval is also calculated in the leading order in $\alpha$.
@article{TMF_1986_68_3_a7,
author = {A. N. Vasil'ev and M. A. Guzev},
title = {Particle capture by a~slowly varying periodic potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {401--414},
year = {1986},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a7/}
}
A. N. Vasil'ev; M. A. Guzev. Particle capture by a slowly varying periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 401-414. http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a7/
[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR
[3] Lenard A., Ann. Phys., 6:3 (1959), 261–276 | DOI | MR | Zbl
[4] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl
[5] Timofeev A. V., ZhETF, 75:4 (1978), 1303–1308 | MR