Dense point spectra of Schrödinger and Dirac operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 18-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Examples are constructed of one-dimensional self-adjoint Schrödinger and Dirac operators with potential that decreases slightly slower than the Coulomb potential for which the point spectrum fills densely the half-axis $[0,\infty)$ and the complete axis $\mathbb R$, respectively. Examples are constructed of potentials $q$ for which the corresponding Schrödinger operator with decreasing potential $C\cdot q$ ($C=\operatorname{const}>0$ is the coupling constant) has a point spectrum that fills the interval $[0,C]$ densely while for $\lambda>C$ there are no eigenvalues at all. This example may be of interest for investigation of the metal – insulator phase transition in the Anderson model. References are given [1–7] to related discussions of the spectral rearrangement of the Schrödinger operator. The main results of the paper were presented briefly in an earlier note of the author [8].
@article{TMF_1986_68_1_a1,
     author = {S. N. Naboko},
     title = {Dense point spectra of {Schr\"odinger} and {Dirac} operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--28},
     year = {1986},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/}
}
TY  - JOUR
AU  - S. N. Naboko
TI  - Dense point spectra of Schrödinger and Dirac operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 18
EP  - 28
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/
LA  - ru
ID  - TMF_1986_68_1_a1
ER  - 
%0 Journal Article
%A S. N. Naboko
%T Dense point spectra of Schrödinger and Dirac operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 18-28
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/
%G ru
%F TMF_1986_68_1_a1
S. N. Naboko. Dense point spectra of Schrödinger and Dirac operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/

[1] Mott N., Elektrony v neuporyadochennykh strukturakh, Mir, M., 1969

[2] Mott N., Perekhod metall - izolyator, Nauka, M., 1979

[3] Pöschel J., Commun. Math. Phys., 88:3 (1983), 447–463 | DOI | MR | Zbl

[4] Bellissard J., Lima R., Festard D., Commun. Math. Phys., 88:2 (1983), 207–234 | DOI | MR | Zbl

[5] Sarnak P., Commun. Math. Phys., 84:3 (1982), 377–401 | DOI | MR | Zbl

[6] Simon B., Adv. Appl. Math., 3 (1983), 463–490 | DOI | MR

[7] Golshad I. Ya., Molchanov S. A., DAN SSSR, 230:5 (1976), 761–764

[8] Naboko S. N., DAN SSSR, 276:6 (1984), 1312–1315 | MR | Zbl

[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR

[10] Neumann J. von, Vigner E., Z. Phys., 30 (1929), 465–467 | Zbl

[11] Veidmann J., Math. Z., 98:2 (1967), 268–302 | DOI | MR

[12] Albeverio S., Ann. Phys., 71:1 (1972), 167–276 | DOI | MR

[13] Pearson D., Commun. Math. Phys., 60:1 (1978), 13–36 | DOI | MR | Zbl

[14] Simon B., Commun. Math. Phys., 87:2 (1982), 253–258 | DOI | MR | Zbl

[15] Lavine R., J. Funct. Anal., 12:1 (1973), 30–54 | DOI | MR | Zbl

[16] Yafaev D. R., Commun. Math. Phys., 85:2 (1982), 177–196 | DOI | MR | Zbl

[17] Naboko S. N., DAN SSSR, 275:6 (1984), 1310–1313 | MR | Zbl

[18] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[19] Skriganov M. M., Tr. MIAN SSSR, 125, 1973, 187–195 | MR | Zbl

[20] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, K., 1965 | MR