Dense point spectra of Schr\"odinger and Dirac operators
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 18-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Examples are constructed of one-dimensional self-adjoint Schrödinger and
Dirac operators with potential that decreases slightly slower than the
Coulomb potential for which the point spectrum fills densely the half-axis
$[0,\infty)$ and the complete axis $\mathbb R$, respectively. Examples are constructed of potentials $q$ for which the corresponding Schrödinger operator with decreasing potential $C\cdot q$ ($C=\operatorname{const}>0$ is the coupling constant) has a point spectrum that fills the interval $[0,C]$ densely while for $\lambda>C$ there are no eigenvalues at all. This example may be of interest for investigation of the metal – insulator phase transition in the Anderson model. References are given [1–7] to related discussions of the spectral rearrangement of the Schrödinger operator. The main results of the paper were presented briefly in an earlier note of the author [8].
			
            
            
            
          
        
      @article{TMF_1986_68_1_a1,
     author = {S. N. Naboko},
     title = {Dense point spectra of {Schr\"odinger} and {Dirac} operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/}
}
                      
                      
                    S. N. Naboko. Dense point spectra of Schr\"odinger and Dirac operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a1/
