Simple proof that an adiabatic invariant is conserved to exponential accuracy over a~complete interval of development
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 146-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bogolyubov–Zubarev fast-phase method [1] is used to give a simple proof of the following well-known proposition [2]: when a perturbation is switched on and off smoothly, the total increment of the adiabatic invariant (the action) for one-dimensional periodic motion in a slowly varying potential is a quantity less than any power of $\alpha$, where $\alpha$ is a parameter that characterizes the rate of change of the potential.
@article{TMF_1986_66_1_a10,
     author = {A. N. Vasil'ev and M. A. Guzev},
     title = {Simple proof that an adiabatic invariant is conserved to exponential accuracy over a~complete interval of development},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {146--149},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a10/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - M. A. Guzev
TI  - Simple proof that an adiabatic invariant is conserved to exponential accuracy over a~complete interval of development
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 146
EP  - 149
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a10/
LA  - ru
ID  - TMF_1986_66_1_a10
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A M. A. Guzev
%T Simple proof that an adiabatic invariant is conserved to exponential accuracy over a~complete interval of development
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 146-149
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a10/
%G ru
%F TMF_1986_66_1_a10
A. N. Vasil'ev; M. A. Guzev. Simple proof that an adiabatic invariant is conserved to exponential accuracy over a~complete interval of development. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 146-149. http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a10/