Analogs of the Burgers equation of arbitrary order
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 303-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear equations of the form $$ \frac{\partial u}{\partial t}=\frac{\partial^n{u}}{\partial x^n}+F\biggl(x,u,\dots,\frac{\partial^{n-1}u}{\partial x^{n-1}}\biggr),\quad n\geqslant 2, $$ are constructed; they are associated with linear substitutions of the Cole–Hopf type and have an infinite set of local symmetries. For $n\leqslant 5$, these equations together with equations of Korteweg–de Vries type exhaust the list of equations of the given type possessing an infinite set of local symmetries.
@article{TMF_1985_65_2_a13,
     author = {S. I. Svinolupov},
     title = {Analogs of the {Burgers} equation of arbitrary order},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {303--307},
     year = {1985},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a13/}
}
TY  - JOUR
AU  - S. I. Svinolupov
TI  - Analogs of the Burgers equation of arbitrary order
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 303
EP  - 307
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a13/
LA  - ru
ID  - TMF_1985_65_2_a13
ER  - 
%0 Journal Article
%A S. I. Svinolupov
%T Analogs of the Burgers equation of arbitrary order
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 303-307
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a13/
%G ru
%F TMF_1985_65_2_a13
S. I. Svinolupov. Analogs of the Burgers equation of arbitrary order. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 303-307. http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a13/

[1] Ibragimov N. Kh., Shabat A. B., DAN SSSR, 244:1 (1979), 57–61 | MR | Zbl

[2] Krichever I. M., Funkts. analiz i ego prilozh., 12:3 (1978), 20–31 | MR | Zbl

[3] Ibragimov N. Kh., Shabat A. B., Funkts. analiz i ego prilozh., 14:4 (1980), 79–80 | MR | Zbl

[4] Sokolov V. V., Shabat A. B., Soviet Sci. Rev. C, 4 (1984), 221–280 | MR | Zbl

[5] Svinolupov S. I., Sokolov V. V., Funkts. analiz i ego prilozh., 16:4 (1982), 86–87 | MR | Zbl

[6] Svinolupov S. I., Sokolov V. V., Integriruemye sistemy, Bashkirskii filial AN SSSR (otdel fiziki i matematiki), Ufa, 1982, 53–67

[7] Svinolupov S. I., Sokolov V. V., Yamilov R. I., DAN SSSR, 271:4 (1983), 802–805 | MR | Zbl

[8] Svinolupov S. I., UMN, 40:4 (1985), 137–138 | MR

[9] Zharkov A. Yu., Svinolupov S. I., Sokolov V. V., Ob evolyutsionnykh uravneniyakh pyatogo poryadka, obladayuschikh beskonechnoi seriei zakonov sokhraneniya, Dep. VINITI, No 4384-84, VINITI, M., 1984