Quantum statistical theory of spatially inhomogeneous Coulomb systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 446-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general quantum-statistical approach for determining the thermodynamic functions of inhomogeneous electron systems is proposed. Expressions for the thermodynamic potential, the electron density, and the electrostatic potential are obtained by the method of dynamical collective variables. Lung's model of chemisorption is considered as an example. A comparison with the density functional method is made.
@article{TMF_1985_62_3_a10,
     author = {G. I. Bigun},
     title = {Quantum statistical theory of spatially inhomogeneous {Coulomb} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {446--460},
     year = {1985},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a10/}
}
TY  - JOUR
AU  - G. I. Bigun
TI  - Quantum statistical theory of spatially inhomogeneous Coulomb systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 446
EP  - 460
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a10/
LA  - ru
ID  - TMF_1985_62_3_a10
ER  - 
%0 Journal Article
%A G. I. Bigun
%T Quantum statistical theory of spatially inhomogeneous Coulomb systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 446-460
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a10/
%G ru
%F TMF_1985_62_3_a10
G. I. Bigun. Quantum statistical theory of spatially inhomogeneous Coulomb systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 446-460. http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a10/

[1] Partenskii M. B., UFN, 128:1 (1979), 69–83 ; 129:3, 559 | DOI

[2] Kiejna A., Wojciechowski K. F., Progr. Surf. Sci., 11 (1981), 293–338 | DOI

[3] Timashev S. F., Fedyanin V. K., FMM, 30:4 (1970), 713–720

[4] Bigun G. I., Ukr. fiz. zh., 19:11 (1974), 1826–1833

[5] Gabovich A. M., Ilchenko L. G., Pashitskii E. A., FTT, 21:6 (1979), 1683–1689

[6] Bigun G. I., TMF, 37:1 (1978), 118–129

[7] Zubarev D. N., DAN SSSR, 45:4 (1954), 757–760 ; Боголюбов Н. Н., Зубарев Д. Н., ЖЭТФ, 28:2 (1955), 129–139 | MR | MR | Zbl

[8] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980, 320 pp. ; Юхновский И. Р., Укр. физ. ж., 9:7 (1964), 702–714; 12:10 (1967), 1677–1694 | MR | MR

[9] Zubarev D. N., TMF, 53:1 (1982), 93–107 | MR

[10] Van Himbergen J. E., Silbey R., Phys. Rev., B20 (1979), 567–575

[11] Kelbg G., Ann. Phys. (DDR), 9:3–4 (1962), 159–168 | DOI

[12] Kubo R., J. Phys. Soc. Japan, 17:7 (1962), 1100–1120 | DOI | MR | Zbl

[13] Lang N. D., Phys. Rev., B4:12 (1971), 4234–4245 | DOI

[14] Hubbard J., Proc. Roy. Soc., A243 (1957), 336–346 ; Kleinman L., Phys. Rev., 160:3 (1967), 585–589 | MR | DOI

[15] Davydov A. S., Kvantovaya mekhanika, Fizmatgiz, M., 1963, 721 pp. | MR

[16] Sahni V., Krieger J. B., Gruenebaum J., Phys. Rev., B12 (1975), 3503–3508 | DOI

[17] Wojciechowski K. F., Trial charge density profiles at the metallic surface and work function calculations, Preprint IC/82/170, International centre for theoretical physics (UNESCO), Miramare–Trieste, Italy, 1982, 1–23.

[18] Bigun G. I., Ukr. fiz. zh., 24:9 (1979), 1313–1320

[19] Sahni V., Perdev J. P., Gruenebaum J., Phys. Rev. B, 23:2 (1981), 6512–6523 | DOI | MR