Solvable model of the relativistic two-fermion bound-state problem with infinitely rising potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 431-441

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-time relativistic equation for fermion-antifermion bound states with a special Lorentz structure of the quasipotential is considered. Radial equations free of the Klein paradox are obtained. For states with parity $\varepsilon_P=(-1)^{J+1}$, the equations admit exact analytic solutions. In the case of a linear potential with $J=0$ it is shown for the example of charmonium that the splittings of the excited levels can be smaller than in the nonrelativistic approach.
@article{TMF_1984_61_3_a10,
     author = {Z. K. Silagadze and A. A. Khelashvili},
     title = {Solvable model of the relativistic two-fermion bound-state problem with infinitely rising potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {431--441},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a10/}
}
TY  - JOUR
AU  - Z. K. Silagadze
AU  - A. A. Khelashvili
TI  - Solvable model of the relativistic two-fermion bound-state problem with infinitely rising potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 431
EP  - 441
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a10/
LA  - ru
ID  - TMF_1984_61_3_a10
ER  - 
%0 Journal Article
%A Z. K. Silagadze
%A A. A. Khelashvili
%T Solvable model of the relativistic two-fermion bound-state problem with infinitely rising potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 431-441
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a10/
%G ru
%F TMF_1984_61_3_a10
Z. K. Silagadze; A. A. Khelashvili. Solvable model of the relativistic two-fermion bound-state problem with infinitely rising potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 61 (1984) no. 3, pp. 431-441. http://geodesic.mathdoc.fr/item/TMF_1984_61_3_a10/