Critical dynamics as a field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 59-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Critical dynamics [1-3] is considered systematically from the point of view of quantum
field theory. The connection between dynamics and statics and its consequences for the
renormalization constants is discussed in detail. The main technical result is the
3 calculation of the $\varepsilon^3$ contribution in the $4-2\varepsilon$ expansion of the dynamical exponent $\Delta_\omega$ (critical dimension of frequency) for the $O_n$-symmetrie $\varphi^4$ model. Instead of the value $\Delta_\omega=2+0,726(1-2\varepsilon\cdot 1,687)\eta$ obtained previously [4], the value $\Delta_\omega=2+0,726(1-2\varepsilon\cdot 0,1885)\eta$ is obtained.
@article{TMF_1984_60_1_a6,
author = {N. V. Antonov and A. N. Vasil'ev},
title = {Critical dynamics as a field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {59--71},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/}
}
N. V. Antonov; A. N. Vasil'ev. Critical dynamics as a field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 59-71. http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/