Critical dynamics as a field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 59-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Critical dynamics [1-3] is considered systematically from the point of view of quantum field theory. The connection between dynamics and statics and its consequences for the renormalization constants is discussed in detail. The main technical result is the 3 calculation of the $\varepsilon^3$ contribution in the $4-2\varepsilon$ expansion of the dynamical exponent $\Delta_\omega$ (critical dimension of frequency) for the $O_n$-symmetrie $\varphi^4$ model. Instead of the value $\Delta_\omega=2+0,726(1-2\varepsilon\cdot 1,687)\eta$ obtained previously [4], the value $\Delta_\omega=2+0,726(1-2\varepsilon\cdot 0,1885)\eta$ is obtained.
@article{TMF_1984_60_1_a6,
     author = {N. V. Antonov and A. N. Vasil'ev},
     title = {Critical dynamics as a field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--71},
     year = {1984},
     volume = {60},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - A. N. Vasil'ev
TI  - Critical dynamics as a field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 59
EP  - 71
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/
LA  - ru
ID  - TMF_1984_60_1_a6
ER  - 
%0 Journal Article
%A N. V. Antonov
%A A. N. Vasil'ev
%T Critical dynamics as a field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 59-71
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/
%G ru
%F TMF_1984_60_1_a6
N. V. Antonov; A. N. Vasil'ev. Critical dynamics as a field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 60 (1984) no. 1, pp. 59-71. http://geodesic.mathdoc.fr/item/TMF_1984_60_1_a6/

[1] Hohenberg P. C., Halperin B. I., Rev. Mod. Phys., 49:3 (1977), 435–479 | DOI

[2] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[3] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[4] De Dominicis C., Brezin E., Zinn-Justin J., Phys. Rev., B12:11 (1975), 4945–4953 | DOI

[5] De Dominicis C., Nuovo Cim. Lett., 12:15 (1975), 567–574 | DOI

[6] Martin P. C., Siggia E. D., Rose H. A., Phys. Rev., A8:1 (1973), 423–437 ; De Dominicis C., Peliti L., Phys. Rev., B18:1 (1978), 353–376 | DOI | DOI

[7] De Dominicis C., Martin P. C., Phys. Rev., A19:1 (1979), 419–422 | DOI

[8] Halperin B. I., Hohenberg P. C., Ma S., Phys. Rev. Lett., 29:23 (1972), 1548–1551 | DOI

[9] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 57:2 (1983), 268–281 | MR | Zbl

[10] Parisi G., Wu Y. S., Scientia Sinica, 24:2 (1981), 483–488 | MR

[11] Alfaro J., Sakita B., Derivation of quenched momentum prescription by means of stochastic quantisation, Preprint CUNY-HEP-82/8, CUNY, New-York, 1982 | MR

[12] Floratos E., Iliopoulos J., Equivalence of stochastic and canonical quantisation in perturbation theory, Preprint LPTENS 82/31, LPTENS, Paris, 1982 | MR

[13] Zwanziger D., Nucl. Phys., B192:1 (1981), 259–269 | DOI | MR

[14] Baulieu L., Zwanziger D., Nucl. Phys., B193:1 (1981), 163–172 | DOI | MR

[15] t'Hooft G., Nucl. Phys., B61:2 (1973), 455–460 | DOI

[16] Vladimirov A. A., TMF, 43:2 (1980), 210–217

[17] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[18] Kazakov D. I., Tarasov O. V., Vladimirov A. A., ZhETF, 77:3(9) (1979), 1035–1045 | MR