Generalized solutions of Gibbs type for the Bogolyubov–Strel'tsova diffusion hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 398-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized solution is constructed for the hierarchy of coupled diffusion equations for the sequence of correlation functions of interacting particles diffusing in a fluid. At the initial time, this solution is identical to Gibbs correlation functions. The solution is obtained in the form of a series in powers of the activity, and the series converges uniformly over a finite time interval.
@article{TMF_1984_58_3_a8,
     author = {V. I. Skripnik},
     title = {Generalized solutions of {Gibbs} type for the {Bogolyubov{\textendash}Strel'tsova} diffusion hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {398--420},
     year = {1984},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a8/}
}
TY  - JOUR
AU  - V. I. Skripnik
TI  - Generalized solutions of Gibbs type for the Bogolyubov–Strel'tsova diffusion hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 398
EP  - 420
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a8/
LA  - ru
ID  - TMF_1984_58_3_a8
ER  - 
%0 Journal Article
%A V. I. Skripnik
%T Generalized solutions of Gibbs type for the Bogolyubov–Strel'tsova diffusion hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 398-420
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a8/
%G ru
%F TMF_1984_58_3_a8
V. I. Skripnik. Generalized solutions of Gibbs type for the Bogolyubov–Strel'tsova diffusion hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 398-420. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a8/

[1] Streltsova E. A., UMZh, XI:1 (1959), 83–92

[2] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, IL, M., 1949, 168 pp.

[3] Ginibre J., J. Math. Phys., 6:2 (1965), 239–251 ; “Some application of functional integration in statistical mechanics”, Statistical Mechanics and Quantum Field Theory, eds. C. Dewitt, R. Stora, Gordon and Breach, Leshouches, 1970, 327–427

[4] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971, 367 pp.

[5] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968, 354 pp. | MR | Zbl