Class of non-Gaussian functional integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of functional integrals with nonquadratic argument of the exponential is considered and a solution obtained in the form of a series in a parameter $b$ that is small, whereas the parameter of standard perturbation theory is large. It is very important that the series converges for all $b>0$. The method makes it possible to solve, for example, the well-known problem of wave propagation in a randomly inhomogeneous medium, and it may also be helpful for numerous other problems.
@article{TMF_1984_58_3_a1,
author = {M. M. Dubovikov},
title = {Class of {non-Gaussian} functional integrals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {329--337},
year = {1984},
volume = {58},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/}
}
M. M. Dubovikov. Class of non-Gaussian functional integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/
[1] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR
[2] Faddeev L. D., Popov V. N., Phys. Lett., D25 (1967), 30–31
[3] Klyatskin V. I., Stokhasticheskie uravneniya i volny v sluchaino-neodnorodnykh sredakh, Nauka, M., 1980 | MR | Zbl
[4] Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku, Nauka, M., 1978
[5] Zavorotnyi V. U., Klyatskin V. I., Tatarskii V. I., ZhETF, 73:8 (1977), 481