Class of non-Gaussian functional integrals
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A class of functional integrals with nonquadratic argument of the
exponential is considered and a solution obtained in the form of a
series in a parameter $b$ that is small, whereas the parameter of
standard perturbation theory is large. It is very important that
the series converges for all $b>0$. The method makes it possible
to solve, for example, the well-known problem of wave propagation
in a randomly inhomogeneous medium, and it may also be helpful for
numerous other problems.
			
            
            
            
          
        
      @article{TMF_1984_58_3_a1,
     author = {M. M. Dubovikov},
     title = {Class of {non-Gaussian} functional integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/}
}
                      
                      
                    M. M. Dubovikov. Class of non-Gaussian functional integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/
