Class of non-Gaussian functional integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of functional integrals with nonquadratic argument of the exponential is considered and a solution obtained in the form of a series in a parameter $b$ that is small, whereas the parameter of standard perturbation theory is large. It is very important that the series converges for all $b>0$. The method makes it possible to solve, for example, the well-known problem of wave propagation in a randomly inhomogeneous medium, and it may also be helpful for numerous other problems.
@article{TMF_1984_58_3_a1,
     author = {M. M. Dubovikov},
     title = {Class of {non-Gaussian} functional integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/}
}
TY  - JOUR
AU  - M. M. Dubovikov
TI  - Class of non-Gaussian functional integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 329
EP  - 337
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/
LA  - ru
ID  - TMF_1984_58_3_a1
ER  - 
%0 Journal Article
%A M. M. Dubovikov
%T Class of non-Gaussian functional integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 329-337
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/
%G ru
%F TMF_1984_58_3_a1
M. M. Dubovikov. Class of non-Gaussian functional integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/TMF_1984_58_3_a1/