Adiabatic perturbation of a periodic potential
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A differential equation of the form
$\left[-\frac{d^2}{dx^2}+p(x)+q(\varepsilon x)\right]f=0$ is
considered. The coefficient $p$ is assumed to be a periodic
function: $p(x+a) =p(x)$. The behavior of the solutions for
$|\varepsilon|\ll1$ is studied. The concept of a turning point is
generalized to this case, and self-consistent asymptotic
expressions are obtained for the solutions at a certain distance
from the turning points and in their neighborhoods. For $p=0$, the
obtained expressions agree with the classical WKB expressions.
			
            
            
            
          
        
      @article{TMF_1984_58_2_a8,
     author = {V. S. Buslaev},
     title = {Adiabatic perturbation of a periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/}
}
                      
                      
                    V. S. Buslaev. Adiabatic perturbation of a periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/
