Adiabatic perturbation of a periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential equation of the form $\left[-\frac{d^2}{dx^2}+p(x)+q(\varepsilon x)\right]f=0$ is considered. The coefficient $p$ is assumed to be a periodic function: $p(x+a) =p(x)$. The behavior of the solutions for $|\varepsilon|\ll1$ is studied. The concept of a turning point is generalized to this case, and self-consistent asymptotic expressions are obtained for the solutions at a certain distance from the turning points and in their neighborhoods. For $p=0$, the obtained expressions agree with the classical WKB expressions.
@article{TMF_1984_58_2_a8,
     author = {V. S. Buslaev},
     title = {Adiabatic perturbation of a periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/}
}
TY  - JOUR
AU  - V. S. Buslaev
TI  - Adiabatic perturbation of a periodic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 233
EP  - 243
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/
LA  - ru
ID  - TMF_1984_58_2_a8
ER  - 
%0 Journal Article
%A V. S. Buslaev
%T Adiabatic perturbation of a periodic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 233-243
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/
%G ru
%F TMF_1984_58_2_a8
V. S. Buslaev. Adiabatic perturbation of a periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/