Adiabatic perturbation of a periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243
Cet article a éte moissonné depuis la source Math-Net.Ru
A differential equation of the form $\left[-\frac{d^2}{dx^2}+p(x)+q(\varepsilon x)\right]f=0$ is considered. The coefficient $p$ is assumed to be a periodic function: $p(x+a) =p(x)$. The behavior of the solutions for $|\varepsilon|\ll1$ is studied. The concept of a turning point is generalized to this case, and self-consistent asymptotic expressions are obtained for the solutions at a certain distance from the turning points and in their neighborhoods. For $p=0$, the obtained expressions agree with the classical WKB expressions.
@article{TMF_1984_58_2_a8,
author = {V. S. Buslaev},
title = {Adiabatic perturbation of a periodic potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--243},
year = {1984},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/}
}
V. S. Buslaev. Adiabatic perturbation of a periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/TMF_1984_58_2_a8/
[1] Zaiman D., Printsipy teorii tverdogo tela, Mir, M., 1974, 472 pp.
[2] Marchenko V. A., Ostrovskii I. V., Matem. sb., 97:4 (1975), 540–606 | MR | Zbl
[3] Firsova N. E., Zap. nauchn. semin. LOMI, 51, 1975, 183–196 | MR | Zbl
[4] Buslaev V. S., On adiabatic perturbation of a periodic potential, I, Preprint FUB/HEP 6/82, Free University, West Berlin, 1982 | MR