Ginzburg–Landau functional for liquid–vapor phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 146-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional integration is used to find the partition function of a simple liquid and the Ginzburg–Landau functional for liquid-vapor phase transition. The short-range repulsive and long-range attractive parts of the particle-particle interaction potential are treated separately, and the expansion parameter is the ratio of the effective ranges of the repulsive and attractive forces. In addition, it is shown by means of the constructed functional that the well-known asymmetry of the liquid-vapor coexistence curve already appears in the framework of self-consistent field theory.
@article{TMF_1984_58_1_a11,
     author = {Yu. M. Ivanchenko and A. A. Lisyanskii},
     title = {Ginzburg{\textendash}Landau functional for liquid{\textendash}vapor phase transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {146--155},
     year = {1984},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/}
}
TY  - JOUR
AU  - Yu. M. Ivanchenko
AU  - A. A. Lisyanskii
TI  - Ginzburg–Landau functional for liquid–vapor phase transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1984
SP  - 146
EP  - 155
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/
LA  - ru
ID  - TMF_1984_58_1_a11
ER  - 
%0 Journal Article
%A Yu. M. Ivanchenko
%A A. A. Lisyanskii
%T Ginzburg–Landau functional for liquid–vapor phase transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1984
%P 146-155
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/
%G ru
%F TMF_1984_58_1_a11
Yu. M. Ivanchenko; A. A. Lisyanskii. Ginzburg–Landau functional for liquid–vapor phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/

[1] Zwanzig R. W., J. Chem. Phys., 22:8 (1954), 1420–1426 | DOI | MR

[2] Barker J. A., Henderson D., J. Chem. Phys., 47:11 (1967), 4714–4721 | DOI

[3] Barker J. A., Henderson D., J. Chem. Phys., 47:8 (1967), 2856–2861 | DOI

[4] Barker J. A., Henderson D., Smith W. R., Phys. Rev. Lett., 21:3 (1968), 134–136 | DOI | MR

[5] Storer R. G., Austr. J. Phys., 22:6 (1969), 747–756 | DOI

[6] Storer R. G., J. Chem. Phys., 51:4 (1969), 1680–1681 | DOI

[7] Alder B. J., Wainwright T. E., J. Chem. Phys., 33:5 (1960), 1439–1451 | DOI | MR

[8] Thiele E., J. Chem. Phys., 39:2 (1963), 474–479 | DOI

[9] Wertheim M. S., Phys. Rev. Lett., 10:8 (1963), 321–323 | DOI | MR | Zbl

[10] Ree F. H., Hoover W. G., J. Chem. Phys., 40:7 (1964), 939–950 | DOI | MR

[11] Baxter R. J., Phys. Rev., 154:1 (1967), 170–174 | DOI | MR

[12] Klein M., J. Chem. Phys., 39:6 (1963), 1388–1397 | DOI

[13] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[14] Pokrovskii V. L., Pisma v ZhETF, 17:4 (1973), 219–221

[15] Fomichev S. V., Khokhlachev S. B., ZhETF, 66:3 (1974), 983–985

[16] Weber L. A., Phys. Rev., 2A:6 (1970), 2379–2388 | DOI

[17] Levelt Sengers J. M. H., Straub J., Vicentini-Missoni M., J. Chem. Phys., 54:12 (1971), 5034–5050 | DOI

[18] Artyukhovskaya L. M., Shimanskaya E. T., Shimanskii Yu. N., ZhETF, 63:6 (1972), 2159–2164

[19] Ivanov D. Yu., Fedyanin V. K., Uravnenie sostoyaniya dlya klassicheskoi zhidkosti v okrestnosti kriticheskoi tochki, Soobscheniya OIYaI R4–8430, OIYaI, Dubna, 1974

[20] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[21] Vaks V. G., Larkin A. I., Pikin S. A., ZhETF, 51:1 (1966), 361–375