Ginzburg--Landau functional for liquid--vapor phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 146-155
Voir la notice de l'article provenant de la source Math-Net.Ru
Functional integration is used to find the partition function of a simple liquid and the
Ginzburg–Landau functional for liquid-vapor phase transition. The short-range
repulsive and long-range attractive parts of the particle-particle interaction potential
are treated separately, and the expansion parameter is the ratio of the effective
ranges of the repulsive and attractive forces. In addition, it is shown by means of
the constructed functional that the well-known asymmetry of the liquid-vapor
coexistence curve already appears in the framework of self-consistent field theory.
@article{TMF_1984_58_1_a11,
author = {Yu. M. Ivanchenko and A. A. Lisyanskii},
title = {Ginzburg--Landau functional for liquid--vapor phase transition},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {146--155},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/}
}
TY - JOUR AU - Yu. M. Ivanchenko AU - A. A. Lisyanskii TI - Ginzburg--Landau functional for liquid--vapor phase transition JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1984 SP - 146 EP - 155 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/ LA - ru ID - TMF_1984_58_1_a11 ER -
Yu. M. Ivanchenko; A. A. Lisyanskii. Ginzburg--Landau functional for liquid--vapor phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 58 (1984) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/TMF_1984_58_1_a11/