Gauge theory for the Poincar\'e group
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 381-387

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of constructing Lagrangians proposed by Cho [1] is generalized to the case of the Poincaré group. For this purpose, a nondegenerate right-invariant Riemannian metric is constructed for the Poincar6 group; this metric is leftinvariant with respect to the direct product of the Lorentz group and the subgroup of displacements. In a left-invariant basis, the metric depends nontrivially on the coordinates of the displacement subgroup, which leads to the appearance in the theory of a vector field. Using this vector field and gauge fields, one can introduce a tetrad field on the space-time manifold. After the Lorentz connection has been made compatible with the linear connection, the Lagrangian of the gauge fields of the Poincaré group reduces to a sum of invariants constructed from the curvature and torsion tensors plus a cosmological term. In the large-scale limit, the equations of motion become identical to Einstein's free equations.
@article{TMF_1983_54_3_a5,
     author = {M. O. Katanaev},
     title = {Gauge theory for the {Poincar\'e} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--387},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Gauge theory for the Poincar\'e group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 381
EP  - 387
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/
LA  - ru
ID  - TMF_1983_54_3_a5
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Gauge theory for the Poincar\'e group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 381-387
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/
%G ru
%F TMF_1983_54_3_a5
M. O. Katanaev. Gauge theory for the Poincar\'e group. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 381-387. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/