Gauge theory for the Poincaré group
Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 381-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of constructing Lagrangians proposed by Cho [1] is generalized to the case of the Poincaré group. For this purpose, a nondegenerate right-invariant Riemannian metric is constructed for the Poincar6 group; this metric is leftinvariant with respect to the direct product of the Lorentz group and the subgroup of displacements. In a left-invariant basis, the metric depends nontrivially on the coordinates of the displacement subgroup, which leads to the appearance in the theory of a vector field. Using this vector field and gauge fields, one can introduce a tetrad field on the space-time manifold. After the Lorentz connection has been made compatible with the linear connection, the Lagrangian of the gauge fields of the Poincaré group reduces to a sum of invariants constructed from the curvature and torsion tensors plus a cosmological term. In the large-scale limit, the equations of motion become identical to Einstein's free equations.
@article{TMF_1983_54_3_a5,
     author = {M. O. Katanaev},
     title = {Gauge theory for the {Poincar\'e} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--387},
     year = {1983},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Gauge theory for the Poincaré group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1983
SP  - 381
EP  - 387
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/
LA  - ru
ID  - TMF_1983_54_3_a5
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Gauge theory for the Poincaré group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1983
%P 381-387
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/
%G ru
%F TMF_1983_54_3_a5
M. O. Katanaev. Gauge theory for the Poincaré group. Teoretičeskaâ i matematičeskaâ fizika, Tome 54 (1983) no. 3, pp. 381-387. http://geodesic.mathdoc.fr/item/TMF_1983_54_3_a5/

[1] Cho Y. M., J. Math. Phys., 16:10 (1975), 2029–2035 | DOI | MR

[2] Utiyama R., Phys. Rev., 101:5 (1956), 1597–1607 ; Elementarnye chastitsy i kompensiruyuschie polya, Sb., Mir, M., 1964, 250–273 | DOI | MR | Zbl

[3] Hehl F. W., von der Heyde P., Kerlick G. D., Nester J. M., Rev. Mod. Phys., 48:3 (1976), 393–416 | DOI | MR

[4] Basombrio F. G., Gen. Rel. Grav., 12:2 (1980), 109–136 | DOI | MR

[5] Hayashi K., Shirafuji T., Progr. Theor. Phys., 64:3 (1980), 866–882 | DOI | MR | Zbl

[6] Kobayashi S., Nomizu K., Foundations of differential geometry, v. 1, Interscience Publishers, N.-Y.–London, 1963, 307 ; Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 334 | MR | Zbl | MR

[7] Cho Y. M., Phys. Rev., D14:12 (1976), 3335–3340

[8] Hennig J., Nitsch J., Gen. Rel. Grav., 13:10 (1981), 947–962 | DOI | MR | Zbl

[9] Luehr C. P., Rosenbaum M. P., J. Math. Phys., 21:6 (1980), 1432–1438 | DOI | MR

[10] Mansouri F., Chang L. N., Phys. Rev., D13:12 (1976), 3192–3200 | MR

[11] Stelle K. S., Phys. Rev., D16:4 (1977), 953–969 | MR

[12] Sezgin E., Van Nieuwenhuizen P., Phys. Rev., D21:12 (1980), 3269–3280 | MR

[13] Rauch R., Nieh H. T., Phys. Rev., D24:8 (1981), 2029–2048 | MR

[14] Fradkin E. S., Tseytlin A. A., Phys. Lett., 110B:2 (1982), 117–122 | DOI