Quantization of symplectic manifolds with conical points
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 374-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantization of a general nonlinear phase manifold $\mathfrak X$ in the quasicIassical approximation leads to the two-dimensional analog of the Bohr–Sommerfeld conditions, in which the form $pdq$ is replaced by $dp\Lambda dq$ and the vacuum energy $h/2$ by $h\nu/2$, where $\nu$ is the index of two-dimensional noncontractable cycles in $\mathfrak X$ . A study is made of smooth manifolds $\mathfrak X$ on which the index $\nu$ is integral and manifolds with conical singularities, on which $\nu$ can take half-integral values. Smooth functions $f$ on $\mathfrak X$ are associated with operators $\hat{f}$ that act on the sections of a ertain sheaf and locally have the form $\hat{f}=f(q,-ih\partial/\partial q)$, $h\to0$.
@article{TMF_1982_53_3_a4,
     author = {M. V. Karasev and V. P. Maslov},
     title = {Quantization of symplectic manifolds with conical points},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--387},
     year = {1982},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a4/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - V. P. Maslov
TI  - Quantization of symplectic manifolds with conical points
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 374
EP  - 387
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a4/
LA  - ru
ID  - TMF_1982_53_3_a4
ER  - 
%0 Journal Article
%A M. V. Karasev
%A V. P. Maslov
%T Quantization of symplectic manifolds with conical points
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 374-387
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a4/
%G ru
%F TMF_1982_53_3_a4
M. V. Karasev; V. P. Maslov. Quantization of symplectic manifolds with conical points. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 374-387. http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a4/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[2] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[3] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL, M., 1961

[4] Borel A., Hirzebruch F., Amer. J. Math., 81:2 (1959), 315–382 | DOI | MR

[5] Gamkrelidze R. V., Izv. AN SSSR, ser. mat., 20 (1956), 685–706 | MR | Zbl

[6] Weinstein A., Lectures on symplectic manifolds, Amer. Math. Soc., Providence, 1979, 48 pp. | MR

[7] Hess H., Lect. Notes Phys., 139 (1981), 1–35 | DOI | MR

[8] Karasev M. V., Maslov V. P., Dokl. AN SSSR, 257:1 (1981), 33–38 | MR | Zbl

[9] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Ann. of Phys. (USA), 111:1 (1978), 61–151 | DOI | MR

[10] Kirillov A. A., UMN, 31:4 (1976), 57–76 | MR | Zbl

[11] Berezin F. A., Funkts. anal. i ego prilozh., 1:2 (1967), 1–14 | MR | Zbl

[12] Mischenko A. S., Fomenko A. T., Funkts. anal. i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[13] Marsden J., Weinstein A., Rep. Math. Phys., 5:1 (1974), 121 | DOI | MR | Zbl

[14] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[15] Czyz J., Rep. Math. Phys., 15:1 (1979), 57–97 | DOI | MR | Zbl

[16] Karasev M. V., Usloviya kvantovaniya Maslova v vysshikh kogomologiyakh i analogi ob'ektov teorii Li dlya kanonicheskikh rassloenii simplekticheskikh mnogoobrazii. I; II, Deponirovano VINITI, No 1092-82; Депонировано ВИНИТИ, No 1092-83 Деп., МИЭМ, 1981, 64 с.

[17] Nekhoroshev N. N., Tr. MMO, 26 (1972), 181–198 | Zbl

[18] Guillemin V., Sternberg S., Amer. J. Math., 101 (1979), 915–955 | DOI | MR | Zbl

[19] Weinstein A., J. Diff. Geom., 9 (1974), 513–517 | DOI | MR | Zbl

[20] Boutet de Monvel L., Guillemin V., Ann. Math. Stud., 99, 1981, 161 pp. | Zbl

[21] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR

[22] Weinstein A., Commun. Pure Appl. Math., 30 (1977), 149–164 | DOI | MR

[23] Anderson R. F. V., J. Funct. Anal., 4:2 (1969), 240–267 | DOI | MR | Zbl

[24] Hörmander L., Comm. Pure Appl. Math., 32:3 (1979), 359–443 | DOI | MR | Zbl

[25] Karasev M. V., Zadachnik po operatornym metodam, MIEM, M., 1979

[26] Karasev M. V., Dokl. AN SSSR, 243:1 (1978), 15–18 | MR | Zbl

[27] Maslov V. P., Nazaikinskii V. E., Izv. AN SSSR, ser. matem., 45:5 (1981), 1049–1087 | MR | Zbl

[28] Karasev M. V., Nazaikinskii V. E., Matem. sb., 106:2, 183–214 | MR

[29] Maslov V. P., ZhVM i MF, 1:1 (1961), 113–128 ; 4, 638–663 | MR | Zbl

[30] Arnold V. I., Funkts. anal. i ego prilozh., 1:1 (1967), 1–14 | MR | Zbl

[31] Satake I., J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl