Explicitly integrable models of quantum field theory with exponential interaction in two-dimensional space
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 358-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit expressions are obtained for the Heisenberg operators of the two-dimensional models of quantum field theory described by the system of equations $\square u_\alpha=g\exp(ku)_\alpha$ as functionals of asymptotic fields $\varphi_\alpha^\mathrm{in}$ satisfying the equations $\square\varphi_\alpha^\mathrm{in}=0$ and appropriate commutation relations. It is shown that in the presence of a finite-dimensional internal symmetry group, when $k$ is the Caftan matrix of a semisimple Lie group, the perturbation series for the operators $\exp(-u_\alpha)$ degenerate into polynomials in the coupling constant $g$, the degrees of the polynomials being related to the structure of the fundamental representations of the corresponding group.
@article{TMF_1982_53_3_a3,
     author = {A. N. Leznov and I. A. Fedoseev},
     title = {Explicitly integrable models of quantum field theory with exponential interaction in two-dimensional space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {358--373},
     year = {1982},
     volume = {53},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a3/}
}
TY  - JOUR
AU  - A. N. Leznov
AU  - I. A. Fedoseev
TI  - Explicitly integrable models of quantum field theory with exponential interaction in two-dimensional space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 358
EP  - 373
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a3/
LA  - ru
ID  - TMF_1982_53_3_a3
ER  - 
%0 Journal Article
%A A. N. Leznov
%A I. A. Fedoseev
%T Explicitly integrable models of quantum field theory with exponential interaction in two-dimensional space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 358-373
%V 53
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a3/
%G ru
%F TMF_1982_53_3_a3
A. N. Leznov; I. A. Fedoseev. Explicitly integrable models of quantum field theory with exponential interaction in two-dimensional space. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 3, pp. 358-373. http://geodesic.mathdoc.fr/item/TMF_1982_53_3_a3/

[1] Leznov A. N., Smirnov V. G., Shabat A. B., Gruppa vnutrennikh simmetrii i usloviya integriruemosti dvumernykh dinamicheskikh sistem, Preprint 81-11, IFVE, Serpukhov, 1981

[2] Shabat A. B., Yamilov R. I., Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981 | MR

[3] Leznov A. N., TMF, 42:3 (1980), 343–349 ; Leznov A. N., Saveliev M. V., Lett. Math. Phys., 3 (1979), 489 | MR | Zbl | DOI | MR | Zbl

[4] Bäcklund A. V., Math. Ann., 9 (1876), 297 ; 17 (1880), 285 | DOI | MR | DOI | MR

[5] Leznov A. N., Fedoseev I. A., On integrability of Yang-Feldman equations for two-dimensional models of quantum field theory connected with generalized Toda lattice, Preprint IHEP 81-52, 1981 | MR

[6] Faddeev L. D., Preprint R-2-79, LOMI, L., 1978; Тахтаджян Л. А., Фаддеев Л. Д., ТМФ, 21:2 (1974), 160–174 ; Корепин В. Е., Фаддеев Л. Д., ТМФ, 25:2 (1975), 147–163 | MR

[7] Zamolodchikov A., Zamolodchikov A., Preprint 35, ITEF, M., 1978 | MR

[8] Kirzhnits D. A., Problemy teorii mnogikh chastits, Fizmatgiz, M., 1957 | Zbl

[9] Schwinger J., Phys. Rev., 74 (1948), 416 ; 1439 | DOI | MR | Zbl

[10] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl