Modular Jordan algebras of self-adjoint operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 77-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An investigation is made into the connection between the type of a $JW$-algebra (i.e. , a weakly closed Jordan algebra of self-adjoint operators on a Hilbert space) and the type of the enveloping yon Neumann algebra. It is shown that every finite trace (faithful or normal) on a $JW$-algebra $A$ can be extended to a finite trace (faithful or normal, respectively) on the enveloping yon Neumann algebra $\mathfrak U(A)$. Using this result, it is shown that the $JW$ algebra $A$ is modular if and only if $\mathfrak U(A)$ is a finite yon Neumann algebra. If $A$ is a reversible $JW$-factor, then it has the type $\operatorname{II}_1$ if and only if $\mathfrak U(A)$ has the type $\operatorname{II}_1$.
@article{TMF_1982_53_1_a7,
     author = {Sh. A. Ayupov},
     title = {Modular {Jordan} algebras of self-adjoint operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {77--82},
     year = {1982},
     volume = {53},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
TI  - Modular Jordan algebras of self-adjoint operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 77
EP  - 82
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/
LA  - ru
ID  - TMF_1982_53_1_a7
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%T Modular Jordan algebras of self-adjoint operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 77-82
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/
%G ru
%F TMF_1982_53_1_a7
Sh. A. Ayupov. Modular Jordan algebras of self-adjoint operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/

[1] Jordan P., Neumann J. von, Wigner E., Ann. of Math., 35 (1934), 29–64 | DOI | MR | Zbl

[2] Stormer E., Acta Math., 115:3–4 (1966), 165–184 | DOI | MR | Zbl

[3] Stormer E., Trans. Amer. Math. Soc., 130:1 (1968), 153–166 | DOI | MR | Zbl

[4] Topping D., Mem. Amer. Math. Soc., 53 (1965), 1–48 | MR

[5] Ayupov Sh. A., Izv. AN UzSSR, ser. fiz.-mat. nauk, 1980, no. 6, 10–16 | MR | Zbl

[6] Jacobson N., Structure and Representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Providence R. I., 1968 | MR | Zbl

[7] Stormer E., Trans. Amer. Math. Soc., 120:12 (1965), 438–447 | DOI | MR | Zbl

[8] Upmeier H., Math. Scand., 46 (1980), 251–264 | DOI | MR | Zbl

[9] Stacey P. J., Type $I_2$ JBW-algebras, Preprint La Trobe University, 1980 | MR | Zbl

[10] Topping D., J. Math. Mech., 15:6 (1966), 1055–1064 | MR

[11] Takesaki M., Theory of Operator Algebras 1, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | MR

[12] Shultz F. W., J. of Funct. Anal., 31:3 (1979), 360–376 | DOI | MR | Zbl