Modular Jordan algebras of self-adjoint operators
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 77-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An investigation is made into the connection between the type of a $JW$-algebra (i.e. , a weakly closed Jordan algebra of self-adjoint operators on a Hilbert space) and the type of the enveloping yon Neumann algebra. It is shown that every finite trace (faithful or normal) on a $JW$-algebra $A$ can be extended to a finite trace (faithful or normal, respectively) on the enveloping yon Neumann algebra $\mathfrak U(A)$. Using this result, it is shown that the $JW$ algebra $A$ is modular if and only if $\mathfrak U(A)$ is a finite yon
Neumann algebra. If $A$ is a reversible $JW$-factor, then it has the type $\operatorname{II}_1$ if and only if $\mathfrak U(A)$ has the type $\operatorname{II}_1$.
			
            
            
            
          
        
      @article{TMF_1982_53_1_a7,
     author = {Sh. A. Ayupov},
     title = {Modular {Jordan} algebras of self-adjoint operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/}
}
                      
                      
                    Sh. A. Ayupov. Modular Jordan algebras of self-adjoint operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 53 (1982) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/TMF_1982_53_1_a7/
