A~generalization of Ruelle's theorem
Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 213-224
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if two generalized functions are equal in a cone and the supports of their Fourier transforms do not intersect, then each of them decreases exponentially within the cone. The argument of the exponential is calculated by means of an auxiliary extremal problem. As a direct consequence, this yields a stronger form of Ruelle's theorem on the spacelike asymptotic behavior of vacuum expectation values.
@article{TMF_1982_52_2_a4,
author = {M. A. Soloviev},
title = {A~generalization of {Ruelle's} theorem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {213--224},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a4/}
}
M. A. Soloviev. A~generalization of Ruelle's theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 52 (1982) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/TMF_1982_52_2_a4/