The inertial mass defined in the general theory of relativity has no physical meaning
Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 163-170

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the inertial mass introduced in the general theory of relativity depends on the choice of the three-dimensional coordinate system, so that it can take arbitrary values. This means that the inertial mass in Einstein's theory is devoid of any physical meaning. In addition, the expression for the inertial mass in Einstein's theory in the general case of an arbitrary three-dimensional coordinate system does not have a classical Newtonian limit, so that the general theory of relativity does not satisfy the principle of correspondence with Newton's theory.
@article{TMF_1982_51_2_a0,
     author = {V. I. Denisov and A. A. Logunov},
     title = {The inertial mass defined in the general theory of relativity has no physical meaning},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a0/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - A. A. Logunov
TI  - The inertial mass defined in the general theory of relativity has no physical meaning
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 163
EP  - 170
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a0/
LA  - ru
ID  - TMF_1982_51_2_a0
ER  - 
%0 Journal Article
%A V. I. Denisov
%A A. A. Logunov
%T The inertial mass defined in the general theory of relativity has no physical meaning
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 163-170
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a0/
%G ru
%F TMF_1982_51_2_a0
V. I. Denisov; A. A. Logunov. The inertial mass defined in the general theory of relativity has no physical meaning. Teoretičeskaâ i matematičeskaâ fizika, Tome 51 (1982) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/TMF_1982_51_2_a0/