Lagrangians for rotationally symmetric gauge fields in a~space of arbitrary dimension
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 240-250
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of gauge fields with arbitrary gauge group that are invariant up to a gauge transformation with respect to a subgroup of the group of spatial rotations. It is shown that the Lagrangian for such fields in a space of arbitrary dimension reduces to a Lagrangiaa of Higgs type in a space of lower dimension; the residual gauge invarianee of the obtained Lagrangian is discussed. The general formulas obtained are valid for rotationally symmetric fields in Minkowski space. In particular, a new derivation of the zero curvature representation for dual spherically symmetric gauge fields is given.
			
            
            
            
          
        
      @article{TMF_1982_50_2_a5,
     author = {I. P. Volobuev},
     title = {Lagrangians for rotationally symmetric gauge fields in a~space of arbitrary dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {240--250},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/}
}
                      
                      
                    TY - JOUR AU - I. P. Volobuev TI - Lagrangians for rotationally symmetric gauge fields in a~space of arbitrary dimension JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 240 EP - 250 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/ LA - ru ID - TMF_1982_50_2_a5 ER -
I. P. Volobuev. Lagrangians for rotationally symmetric gauge fields in a~space of arbitrary dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 240-250. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/