Lagrangians for rotationally symmetric gauge fields in a space of arbitrary dimension
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 240-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of gauge fields with arbitrary gauge group that are invariant up to a gauge transformation with respect to a subgroup of the group of spatial rotations. It is shown that the Lagrangian for such fields in a space of arbitrary dimension reduces to a Lagrangiaa of Higgs type in a space of lower dimension; the residual gauge invarianee of the obtained Lagrangian is discussed. The general formulas obtained are valid for rotationally symmetric fields in Minkowski space. In particular, a new derivation of the zero curvature representation for dual spherically symmetric gauge fields is given.
@article{TMF_1982_50_2_a5,
     author = {I. P. Volobuev},
     title = {Lagrangians for rotationally symmetric gauge fields in a~space of arbitrary dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {240--250},
     year = {1982},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/}
}
TY  - JOUR
AU  - I. P. Volobuev
TI  - Lagrangians for rotationally symmetric gauge fields in a space of arbitrary dimension
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 240
EP  - 250
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/
LA  - ru
ID  - TMF_1982_50_2_a5
ER  - 
%0 Journal Article
%A I. P. Volobuev
%T Lagrangians for rotationally symmetric gauge fields in a space of arbitrary dimension
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 240-250
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/
%G ru
%F TMF_1982_50_2_a5
I. P. Volobuev. Lagrangians for rotationally symmetric gauge fields in a space of arbitrary dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 240-250. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a5/

[1] Leznov A. N., Savelev M. V., EChAYa, 11:1 (1980), 40–91 | MR

[2] Schwarz A. S., Commun. Math. Phys., 56 (1977), 79–86 | DOI | MR | Zbl

[3] Romanov V. N., Schwarz A. S., Tyupkin Yu. S., Nucl. Phys., B130 (1977), 209–220 | DOI | MR

[4] Forgács P., Manton N. S., Commun. Math. Phys., 72 (1980), 15–34 | DOI | MR

[5] Burlankov D. E., TMF, 32:3 (1977), 326–335 | MR

[6] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 464 pp. | MR

[7] Witten E., Phys. Rev. Lett., 38 (1977), 121–124 | DOI

[8] Lesnov A. N., Saveliev M. V., Phys. Lett., 79B (1978), 294–301 | DOI

[9] Lesnov A. N., Saveliev M. V., Lett. Math. Phys., 3 (1979), 489–494 | DOI | MR