Does the general theory of relativity have a classical Newtonian limit?
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 291-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Newton's theory of gravitation and the Newtonian approximation of the general theory of relativity are considered. It is shown that in the latter there is no Newtonian limit for the integrals of the motion of the matter and the gravitational field.
@article{TMF_1980_45_3_a0,
     author = {V. I. Denisov and A. A. Logunov},
     title = {Does the general theory of relativity have a classical {Newtonian} limit?},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--301},
     year = {1980},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a0/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - A. A. Logunov
TI  - Does the general theory of relativity have a classical Newtonian limit?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 291
EP  - 301
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a0/
LA  - ru
ID  - TMF_1980_45_3_a0
ER  - 
%0 Journal Article
%A V. I. Denisov
%A A. A. Logunov
%T Does the general theory of relativity have a classical Newtonian limit?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 291-301
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a0/
%G ru
%F TMF_1980_45_3_a0
V. I. Denisov; A. A. Logunov. Does the general theory of relativity have a classical Newtonian limit?. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 291-301. http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a0/

[1] V. I. Denisov, A. A. Logunov, TMF, 43 (1980), 187 | MR | Zbl

[2] S. Veinberg, Gravitatsiya i kosmologiya, «Mir», 1975

[3] A. Einshtein, Sobranie nauchnykh trudov, t. I, «Nauka», 1965

[4] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Fizmatgiz, 1961

[5] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, t. 3, «Mir», 1977 | MR

[6] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, 1963

[7] A. Einstein, Phys. Z., 15 (1914), 108 | Zbl