Peierls-Fr\"ohlich problem and potentials with finite number of~gaps.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 268-275

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact solution of the Peierls–Fröhlich problem about the self-consistent state of conduction electron and lattice is proved to be a one-gap potential. Equations which describe the dependence of the boundaries of the spectrum on the parameters of the problem (such as the electron density, lattice elastic constant and temperature) are obtained. The equations are exactly solved at the absolute zero of temperature and investigated at the critical temperature at which lattice deformations arise. Charge density waves and condensons are shown to be limiting cases of the considered selfconsistent state.
@article{TMF_1980_45_2_a11,
     author = {E. D. Belokolos},
     title = {Peierls-Fr\"ohlich problem and potentials with finite number {of~gaps.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--275},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - Peierls-Fr\"ohlich problem and potentials with finite number of~gaps.~I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 268
EP  - 275
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/
LA  - ru
ID  - TMF_1980_45_2_a11
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T Peierls-Fr\"ohlich problem and potentials with finite number of~gaps.~I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 268-275
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/
%G ru
%F TMF_1980_45_2_a11
E. D. Belokolos. Peierls-Fr\"ohlich problem and potentials with finite number of~gaps.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 268-275. http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/