Peierls-Fröhlich problem and potentials with finite number of gaps. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 268-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact solution of the Peierls–Fröhlich problem about the self-consistent state of conduction electron and lattice is proved to be a one-gap potential. Equations which describe the dependence of the boundaries of the spectrum on the parameters of the problem (such as the electron density, lattice elastic constant and temperature) are obtained. The equations are exactly solved at the absolute zero of temperature and investigated at the critical temperature at which lattice deformations arise. Charge density waves and condensons are shown to be limiting cases of the considered selfconsistent state.
@article{TMF_1980_45_2_a11,
     author = {E. D. Belokolos},
     title = {Peierls-Fr\"ohlich problem and potentials with finite number {of~gaps.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--275},
     year = {1980},
     volume = {45},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - Peierls-Fröhlich problem and potentials with finite number of gaps. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 268
EP  - 275
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/
LA  - ru
ID  - TMF_1980_45_2_a11
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T Peierls-Fröhlich problem and potentials with finite number of gaps. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 268-275
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/
%G ru
%F TMF_1980_45_2_a11
E. D. Belokolos. Peierls-Fröhlich problem and potentials with finite number of gaps. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 268-275. http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a11/

[1] Problema vysokotemperaturnoi sverkhprovodimosti, eds. V. L. Ginzburg, D. A. Kirzhnits, «Nauka», 1977

[2] Sverkhprovodyaschie soedineniya so strukturoi $\beta$-volframa, ed. L. P. Gorkov, «Mir», 1977

[3] H. Frohlich, Proc. Roy. Soc., A223 (1954), 296 | DOI | Zbl

[4] C. G. Kuper, Proc. Roy. Soc., A227 (1955), 214 | DOI | Zbl

[5] R. E. Peierls, Quantum theory of solids, Clarendon Press, Oxford, 1955; R. Paierls, Kvantovaya teoriya tverdykh tel, IL, 1956

[6] S. P. Novikov, Funkts. analiz, 8 (1974), 54 | MR | Zbl

[7] B. A. Dubrovin, Funkts. analiz, 9 (1975), 41 | MR | Zbl

[8] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31 (1976), 55 | MR | Zbl

[9] A. Erdelyi et al., Higher trancendental functions, v. 2, N. Y., 1955; G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 3, «Nauka», 1974 | MR

[10] A. R. Its, V. B. Matveev, Problemy matem. fiziki, no. 8, Izd. LGU, L., 1976, 70 | MR

[11] E. D. Belokolos, Abstracts Intern. Conf. Quasi One-dimensional conductors (Sept. 4–8, 1978, Dubrovnik, SFR Yugoslavia), 47 | Zbl

[12] S. A. Brazovskii, S. A. Gordyunin, N. N. Kirova, Pisma ZhETF, 31 (1980), 486