Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 381-386
Cet article a éte moissonné depuis la source Math-Net.Ru
Expansions into powers of a small coupling constant are derived for the eigen-value and resonance of one-dimensional Schrödinger operator. Character of changes of the number of eigen-values is studied and the formulas for the number of negative eigenvalues are pointed out.
@article{TMF_1980_44_3_a8,
author = {S. N. Lakaev},
title = {Discrete spectrum and resonances of~a~one-dimensional {Schr\"odinger} operator for small values of~the coupling constants},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {381--386},
year = {1980},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a8/}
}
TY - JOUR AU - S. N. Lakaev TI - Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 381 EP - 386 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a8/ LA - ru ID - TMF_1980_44_3_a8 ER -
%0 Journal Article %A S. N. Lakaev %T Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 381-386 %V 44 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a8/ %G ru %F TMF_1980_44_3_a8
S. N. Lakaev. Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 381-386. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a8/
[1] B. Simon, Ann. Phys., 97 (1976), 279 | DOI | MR | Zbl
[2] J. S. Howland, Pacif. J. Math., 55 (1974), 157 | DOI | MR | Zbl
[3] S. N. Lakaev, DAN UzSSR, 1979, no. 4 | MR | Zbl
[4] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, «Nauka», 1967 | MR
[5] V. I. Smirnov, Kurs vysshei matematiki, t. 4, Fizmatgiz, 1958 | MR | Zbl
[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», 1972 | MR | Zbl