Strength-function algorithm for stationary problems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 253-261
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Possibility of application of the strength function method to the solution of arbitrary quantum-mechanical stationary problem with discrete nondegenerate spectrum is demonstrated. The method proposed for the construction of the strength function does not require the diagonalization of the Hamiltonian and reduces to the calculation of the signed minors to the Hamiltonian matrix. An algorithm is given for constructing the strength function for the general interaction invariant under the time inversion in the random phase approximation. A particular case not considered earlier is analysed which is important for the description of the structure of fast-rotating nuclei.
			
            
            
            
          
        
      @article{TMF_1980_42_2_a9,
     author = {I. N. Mikhailov and Kh. L. Molina and R. G. Nazmitdinov},
     title = {Strength-function algorithm for stationary problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--261},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a9/}
}
                      
                      
                    TY - JOUR AU - I. N. Mikhailov AU - Kh. L. Molina AU - R. G. Nazmitdinov TI - Strength-function algorithm for stationary problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 253 EP - 261 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a9/ LA - ru ID - TMF_1980_42_2_a9 ER -
I. N. Mikhailov; Kh. L. Molina; R. G. Nazmitdinov. Strength-function algorithm for stationary problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 253-261. http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a9/
