Path integrals and ordering of operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 51-63
Cet article a éte moissonné depuis la source Math-Net.Ru
A method, not based on finite-multiplicity approximations, is proposed for constructing the Feynman path integral for a particle in a curved space whose geometry is defined by the kinetic energy. For the example of a system with the Hamiltonian $H=f^2(x)p^2$ (and some other systems) it is shown that the path integral can be obtained by a change of the variables of integration from a Gaussian functional integral, and this then makes it possible to associate the function $H$ uniquely with an operator. The procedure for constructing the operator corresponding to a classical function of the coordinates and the momenta, for given form of the Hamiltonian, is also considered.
@article{TMF_1979_40_1_a5,
author = {L. F. Blazhievskii},
title = {Path integrals and ordering of operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {51--63},
year = {1979},
volume = {40},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a5/}
}
L. F. Blazhievskii. Path integrals and ordering of operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a5/
[1] D. Bom, Kvantovaya teoriya, Fizmatgiz, 1961, str. 225 | MR
[2] F. A. Berezin, TMF, 6 (1971), 194 | MR | Zbl
[3] I. W. Mayes, J. S. Dowker, Proc. Roy. Soc., London, A327 (1972), 131 | DOI
[4] A. L. Alimov, TMF, 11 (1972), 182 ; 20 (1974), 302 | MR | MR | Zbl
[5] F. J. Testa, J. Math. Phys., 12 (1971), 1471 | DOI | MR | Zbl
[6] Cohen Leon, J. Math. Phys., 11 (1970), 3296 | DOI | Zbl
[7] E. H. Kerner, W. G. Sutcliffe, J. Math. Phys., 11 (1970), 391 | DOI
[8] T. Lukes, J. Phys. A: Math., Nucl. and Gen., 6:7 (1973), 77 | DOI | MR
[9] K. S. Cheng, J. Math. Phys., 13 (1972), 1723 ; 14 (1973), 980 | DOI | DOI
[10] C. S. Hsue, J. Math. Phys., 16 (1975), 2326 | DOI
[11] E. S. Fradkin, Trudy IV zimnei shkoly (Polsha, Karpachi, 1967)