Path integrals and ordering of operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 51-63
Voir la notice de l'article provenant de la source Math-Net.Ru
A method, not based on finite-multiplicity approximations, is proposed for constructing the
Feynman path integral for a particle in a curved space whose geometry is defined by the
kinetic energy. For the example of a system with the Hamiltonian $H=f^2(x)p^2$ (and some
other systems) it is shown that the path integral can be obtained by a change of the variables
of integration from a Gaussian functional integral, and this then makes it possible to associate the function $H$ uniquely with an operator. The procedure for constructing the operator corresponding to a classical function of the coordinates and the momenta, for given form of the Hamiltonian, is also considered.
@article{TMF_1979_40_1_a5,
author = {L. F. Blazhievskii},
title = {Path integrals and ordering of operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {51--63},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a5/}
}
L. F. Blazhievskii. Path integrals and ordering of operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/TMF_1979_40_1_a5/