Transition operator between multipole states and their tensor structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 219-233
Cet article a éte moissonné depuis la source Math-Net.Ru
An operator that determines the reeursion of multipole moments is found. It is shown that the use of multipole moments as functions of the coordinates of a point charge is in some sense preferable to the use of spherical functions to calculate the energy and correlation characteristics of radiation, to study matrix elements of multipole moments, and in the theory of addition of angular momentum. The quantum-mechanical meaning of multipole states and the transition operator defining the creation of an “angularmomentum quantum” is elucidated.
@article{TMF_1979_39_2_a8,
author = {S. P. Efimov},
title = {Transition operator between multipole states and their tensor structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {219--233},
year = {1979},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a8/}
}
S. P. Efimov. Transition operator between multipole states and their tensor structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 39 (1979) no. 2, pp. 219-233. http://geodesic.mathdoc.fr/item/TMF_1979_39_2_a8/
[1] L. D. Landau, E. M. Lifshits, Teoriya polya, Fizmatgiz, 1962 | MR
[2] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, «Nauka», 1974 | MR
[3] E. Gobson, Teoriya sfericheskikh i ellipsoidalnykh funktsii, IL, 1952, gl. 4
[4] J. C. Maxwell, A treatése on electricity and magnetism, V. 1, chapter 9, Oxford, 1892 | MR
[5] Dzh. Dzhekson, Klassicheskaya elektrodinamika, «Mir», 1965, str. 330
[6] M. Rouz, Polya multipolei, IL, 1957
[7] A. P. Yutsis, A. A. Bandzaitis, Teoriya momenta kolichestva dvizheniya v kvantovoi mekhanike, Mintis, Vilnyus, 1965 | MR | Zbl