Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 370-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An expression is obtained for amplitudes of scattering on nonlocal spheroidal potentials which contains partial-wave amplitudes. In accordance with the variable phase method, equations are obtained for the amplitude functions. The partial-wave amplitudes are determined in the cases when separable potential functions participate in the expansion of the kernel of the potential with respect to the angular functions.
@article{TMF_1979_38_3_a8,
     author = {K. I. Ivanov and A. T. Marinov},
     title = {Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--379},
     year = {1979},
     volume = {38},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/}
}
TY  - JOUR
AU  - K. I. Ivanov
AU  - A. T. Marinov
TI  - Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 370
EP  - 379
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/
LA  - ru
ID  - TMF_1979_38_3_a8
ER  - 
%0 Journal Article
%A K. I. Ivanov
%A A. T. Marinov
%T Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 370-379
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/
%G ru
%F TMF_1979_38_3_a8
K. I. Ivanov; A. T. Marinov. Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 370-379. http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/

[1] N. Mott, G. Messi, Teoriya atomnykh stolknovenii, «Mir», 1969

[2] I. V. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, «Nauka», 1976 | MR | Zbl

[3] D. I. Abramov, I. V. Komarov, TMF, 22 (1975), 253 | Zbl

[4] F. Kalodzhero, Metod fazovykh funktsii v teorii potentsialnogo rasseyaniya, «Mir», 1972

[5] V. I. Gurkov, L. G. Yakovlev, Izv. VUZov, fizika, 1974, no. 6, 122; 1975, No 4, 127 | MR

[6] K. I. Ivanov, Soobschenie OIYaI R4-11175, Dubna, 1977

[7] F. A. Gareev, M. Ch. Gizzatkulov, J. Revai, Preprint JINR E4-10412, Dubna, 1977 | MR | Zbl

[8] H. A. Bethe, L. C. Maximon, Phys. Rev., 93 (1954), 768 | DOI | MR | Zbl

[9] S. Mukherjee, S. S. Chandel, Trieste preprint 1C/77/25, Trieste, 1977

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, «Nauka», 1967 | MR

[11] J. Meixner, F. W. Schäfke, Mathieuche Funktionen und Sphäroidfunktionen, Springer, Berlin, 1954 | MR

[12] P. Thornton Greenland, W. Greiner, Theor. Chim. Acta, Berl., 42 (1976), 273 | DOI