Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 370-379

Voir la notice de l'article provenant de la source Math-Net.Ru

An expression is obtained for amplitudes of scattering on nonlocal spheroidal potentials which contains partial-wave amplitudes. In accordance with the variable phase method, equations are obtained for the amplitude functions. The partial-wave amplitudes are determined in the cases when separable potential functions participate in the expansion of the kernel of the potential with respect to the angular functions.
@article{TMF_1979_38_3_a8,
     author = {K. I. Ivanov and A. T. Marinov},
     title = {Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--379},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/}
}
TY  - JOUR
AU  - K. I. Ivanov
AU  - A. T. Marinov
TI  - Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 370
EP  - 379
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/
LA  - ru
ID  - TMF_1979_38_3_a8
ER  - 
%0 Journal Article
%A K. I. Ivanov
%A A. T. Marinov
%T Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 370-379
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/
%G ru
%F TMF_1979_38_3_a8
K. I. Ivanov; A. T. Marinov. Variable phase method for scattering on nonlocal potentials that admit separation of the variables in spheroidal coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 3, pp. 370-379. http://geodesic.mathdoc.fr/item/TMF_1979_38_3_a8/