Kinetic equations for a~paramagnet in parallel constant and alternating fields
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 282-288
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Zubarev's nonequilibrium statistical operator method is used to construct the theory of nonresonance paramagnetic absorption in parallel constant and alternating magnetic fields with allowance for the nonequilibrium state of the reservoir of dipo!e-dipole interactions and spin-spin and spin-lattice relaxation processes. The system of kinetic equations for the reciprocal temperatures is solved and the paramagnetic susceptibilities determined. Microscopic expressions are found for the parameters of the phenomenological theories that describe spin-spin and spin-lattice relaxation.
			
            
            
            
          
        
      @article{TMF_1979_38_2_a13,
     author = {I. S. Donskaya and A. R. Kessel},
     title = {Kinetic equations for a~paramagnet in parallel constant and alternating fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {282--288},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a13/}
}
                      
                      
                    TY - JOUR AU - I. S. Donskaya AU - A. R. Kessel TI - Kinetic equations for a~paramagnet in parallel constant and alternating fields JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 282 EP - 288 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a13/ LA - ru ID - TMF_1979_38_2_a13 ER -
I. S. Donskaya; A. R. Kessel. Kinetic equations for a~paramagnet in parallel constant and alternating fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 38 (1979) no. 2, pp. 282-288. http://geodesic.mathdoc.fr/item/TMF_1979_38_2_a13/
