Self-consistent theory of electron correlation in the Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 208-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dyson equation for the two-time thermal Green's functions is used for a self-consistent calculation of the single-particle Green's functions in the Hubbard model. The method makes it possible to obtain a generalized interpolation solution of the Hubbard model valid for arbitrary relationship between the effective band width and the Coulomb repulsion parameter. Two variants of the theory make it possible to obtain two exact representations for the mass operator, which are used to obtain approximate solutions in the atomic and band limits.
@article{TMF_1978_36_2_a5,
     author = {A. L. Kuzemsky},
     title = {Self-consistent theory of electron correlation in the {Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--223},
     year = {1978},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a5/}
}
TY  - JOUR
AU  - A. L. Kuzemsky
TI  - Self-consistent theory of electron correlation in the Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 208
EP  - 223
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a5/
LA  - ru
ID  - TMF_1978_36_2_a5
ER  - 
%0 Journal Article
%A A. L. Kuzemsky
%T Self-consistent theory of electron correlation in the Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 208-223
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a5/
%G ru
%F TMF_1978_36_2_a5
A. L. Kuzemsky. Self-consistent theory of electron correlation in the Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a5/

[1] N. N. Bogolyubov, S. V. Tyablikov, DAN SSSR, 126 (1959), 53 | Zbl

[2] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, «Nauka», 1975 | MR

[3] N. M. Plakida, TMF, 5 (1970), 147 | MR

[4] N. M. Plakida, FTT, 14 (1972), 2841 | MR

[5] N. M. Plakida, Phys. Lett., A43 (1973), 481 | DOI | MR

[6] G. Konvent, N. M. Plakida, F. Vukailovich, Preprint OIYaI R4-7145, Dubna, 1973; З. Петру, Г. Л. Маилян, Препринт ОИЯИ Р4-8893, Дубна, 1975

[7] J. Hubbard, Proc. Roy. Soc., A276 (1963), 238 | DOI

[8] D. I. Khomskii, FMM, 29 (1970), 31

[9] A. L. Kuzemskii, Preprint OIYaI R4-7225, Dubna, 1973

[10] A. L. Kuzemskii, Preprint OIYaI R17-9239, Dubna, 1975

[11] A. L. Kuzemskii, Preprint OIYaI R17-10695, Dubna, 1977

[12] W. D. Langer, Phys. Lett., 35A (1971), 45 | DOI

[13] N. M. Plakida, P. R. Rusek, Preprint OIYaI R4-8032, Dubna, 1974 | MR

[14] R. M. Uait, Kvantovaya teoriya magnetizma, «Mir», 1972

[15] A. L. Kuzemskii, Acta Phys. Pol., A49 (1976), 169

[16] K. S. Schönhammer, J. Phys., C7 (1974), 3520

[17] K. Elk, Phys. Stat. Sol., 64 (1974), 489 | DOI

[18] D. M. Esterling, Phys. Rev., B2 (1970), 4686 | DOI

[19] V. A. Kapustin, FTT, 16 (1974), 804

[20] J. Hubbard, Proc. Roy. Soc., A281 (1964), 401 | DOI

[21] L. M. Roth, Phys. Rev., 184 (1969), 451 | DOI

[22] O. Krisement, Z. Phys., 270 (1974), 383 | DOI

[23] W. Holting, Z. Phys., 255 (1972), 25 | DOI | MR

[24] O. K. Kalashnikov, E. S. Fradkin, ZhETF, 55 (1968), 607; ТМФ, 5 (1970), 417

[25] R. A. Tahir-Kheli, H. S. Jarrett, Phys. Rev., 180 (1969), 544 | DOI

[26] D. M. Edwards, A. C. Hewson, Rev. Mod. Phys., 40 (1968), 810 | DOI

[27] J. M. Luttinger, Phys. Rev., 119 (1960), 1153 | DOI | MR | Zbl

[28] V. M. Galitskii, Primenenie metodov kvantovoi teorii polya k zadacham mnogikh tel, Sb., Atomizdat, 1963

[29] E. V. Kuzmin, S. G. Ovchinnikov, TMF, 31 (1977), 379 | MR