Diagram technique for the low-temperature phase in the chiral field model
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 159-165

Voir la notice de l'article provenant de la source Math-Net.Ru

A perturbation theory in powers of $1/N$ is constructed for the lower phase of the threedimensional chiral field model. The diagrams have the peculiar property that although they contain $N$ propagators of the massless field the model contains only $N-1$ Goldstone particles and the $O(N)$ symmetry is broken. The constructed $1/N$ perturbation theory for the lower phase is renormalizable and free of infrared divergences. It is shown that for the lower phase a Wilson expansion of special form is valid: $(n(x),n(x+\varepsilon))=C(\varepsilon)+R(x,\varepsilon)$, where $C(\varepsilon)$ is a $c$-number and $R(x,e)$ converges weakly to zero as $\varepsilon\to\infty$.
@article{TMF_1978_36_2_a1,
     author = {I. Ya. Aref'eva},
     title = {Diagram technique for the low-temperature phase in the chiral field model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {159--165},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
TI  - Diagram technique for the low-temperature phase in the chiral field model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 159
EP  - 165
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/
LA  - ru
ID  - TMF_1978_36_2_a1
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%T Diagram technique for the low-temperature phase in the chiral field model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 159-165
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/
%G ru
%F TMF_1978_36_2_a1
I. Ya. Aref'eva. Diagram technique for the low-temperature phase in the chiral field model. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 159-165. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/