Diagram technique for the low-temperature phase in the chiral field model
Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 159-165
Cet article a éte moissonné depuis la source Math-Net.Ru
A perturbation theory in powers of $1/N$ is constructed for the lower phase of the threedimensional chiral field model. The diagrams have the peculiar property that although they contain $N$ propagators of the massless field the model contains only $N-1$ Goldstone particles and the $O(N)$ symmetry is broken. The constructed $1/N$ perturbation theory for the lower phase is renormalizable and free of infrared divergences. It is shown that for the lower phase a Wilson expansion of special form is valid: $(n(x),n(x+\varepsilon))=C(\varepsilon)+R(x,\varepsilon)$, where $C(\varepsilon)$ is a $c$-number and $R(x,e)$ converges weakly to zero as $\varepsilon\to\infty$.
@article{TMF_1978_36_2_a1,
author = {I. Ya. Aref'eva},
title = {Diagram technique for the low-temperature phase in the chiral field model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {159--165},
year = {1978},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/}
}
I. Ya. Aref'eva. Diagram technique for the low-temperature phase in the chiral field model. Teoretičeskaâ i matematičeskaâ fizika, Tome 36 (1978) no. 2, pp. 159-165. http://geodesic.mathdoc.fr/item/TMF_1978_36_2_a1/
[1] I. Ya. Arefeva, TMF, 29 (1976), 147 ; 31 (1977), 3 | MR | MR
[2] W. A. Bardeen, B. W. Lee, R. E. Shrock, Phys. Rev., D14 (1976), 985
[3] E. Brezin, J. Zinn-Justin, Phys. Rev., D14 (1976), 2615
[4] I. Ya. Arefeva, Trudy konferentsii po izbrannym voprosam statisticheskoi fiziki, Dubna, 1977
[5] I. Ya. Arefeva, TMF, 36 (1978), 24
[6] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, «Nauka», 1975 | MR