Pomeranchuk's theorem at asymptotic and finite energies
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 2, pp. 153-157
Cet article a éte moissonné depuis la source Math-Net.Ru
Various forms of Pomeranehuk's theorem are considered from a unified point of view. An analog of the theorem at finite energies is obtained.
@article{TMF_1978_34_2_a1,
author = {Yu. S. Vernov and M. N. Mnatsakanova},
title = {Pomeranchuk's theorem at asymptotic and finite energies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {153--157},
year = {1978},
volume = {34},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_2_a1/}
}
Yu. S. Vernov; M. N. Mnatsakanova. Pomeranchuk's theorem at asymptotic and finite energies. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 2, pp. 153-157. http://geodesic.mathdoc.fr/item/TMF_1978_34_2_a1/
[1] I. Ya. Pomeranchuk, ZhETF, 34 (1958), 725
[2] S. Weinberg, Phys. Rev., 124 (1961), 2049 | DOI | MR | Zbl
[3] M. Sugavara, A. Kanazava, Phys. Rev., 123 (1961), 1995 | DOI
[4] N. N. Meiman, ZhETF, 43 (1962), 2277; 68 (1975), 791 | MR
[5] A. Martin, Nuovo Cim., 309 (1965), 704 | DOI | MR
[6] R. J. Eden, Phys. Rev. Lett., 16 (1966), 39 | DOI | MR
[7] G. G. Volkov, A. A. Logunov, M. A. Mestvirishvili, TMF, 4 (1970), 196
[8] T. Kinoshita, Phys. Rev., 2D (1970), 2346
[9] Yu. M. Lomsadze, Preprint ITF-75-126R, Kiev, 1975
[10] T. N. Truong, W. S. Lam, Phys. Rev., D6 (1972), 2875 | MR
[11] D. Amati, M. Fierz, V. Glaser, Phys. Rev. Lett., 4 (1960), 89 | DOI