Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 300-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bogolyubov's method is used to quantize a boson field in the neighborhood of a two-particle classical solution in the case of a Hamiltonian with an arbitrary continuous symmetry group.
@article{TMF_1976_29_3_a1,
     author = {A. V. Razumov and O. A. Khrustalev},
     title = {Application of {Bogolyubov's} method to quantization of boson fields in the neighborhood of a~classical solution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {300--308},
     year = {1976},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a1/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - O. A. Khrustalev
TI  - Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 300
EP  - 308
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a1/
LA  - ru
ID  - TMF_1976_29_3_a1
ER  - 
%0 Journal Article
%A A. V. Razumov
%A O. A. Khrustalev
%T Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 300-308
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a1/
%G ru
%F TMF_1976_29_3_a1
A. V. Razumov; O. A. Khrustalev. Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 300-308. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a1/

[1] G. Wentzel, Helv. Phys. Acta, 13 (1940), 269 ; W. Pauli, S. M. Dancoff, Phys. Rev., 62 (1942), 85 | Zbl | DOI | MR | Zbl

[2] A. Pais, R. Serber, Phys. Rev., 105 (1957), 1636 | DOI | MR | Zbl

[3] N. N. Bogolyubov, UMZh, 2 (1950), 3 ; Избранные труды, т. 2, «Наукова думка», Киев, 1970 | MR | MR | Zbl

[4] E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, TMF, 10 (1972), 162 ; А. А. Архипов, Н. Е. Тюрин, ТМФ, 17 (1973), 57 ; О. Д. Тимофеевская, Н. Е. Тюрин, А. В. Шургая, ТМФ, 17 (1973), 79 ; С. В. Семенов, О. Д. Тимофеевская, Н. Е. Тюрин, ТМФ, 21 (1974), 207 ; А. В. Шургая, Препринт ИФВЭ 75-108, Серпухов, 1975

[5] R. Rajeraman, Phys. Rep., 21C (1975), 229

[6] E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, TMF, 11 (1972), 317

[7] E. P. Solodovnikova, A. N. Tavkhelidze, TMF, 21 (1974), 13

[8] L. P. Eizenkhart, Nepreryvnye gruppy preobrazovanii, IL, 1947

[9] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, «Mir», 1964 | Zbl

[10] S. V. Semenov, TMF, 18 (1974), 353

[11] E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, TMF, 12 (1972), 164