Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 240-249

Voir la notice de l'article provenant de la source Math-Net.Ru

Models are considered in which a particle moves in the field of two moving zero-range potentials (ZRP). Exact wave functions of the three-dimensional problem are constructed for a special choice of the ZRP trajectories. For a one-dimensional model with two uniformly moving ZRPs, stripping and rearrangement are investigated. Oscillations of a new type in the rearrangement probability are considered. In the adiabatic approximation, a general expression is obtained for these oscillations. The results of numerical calculation are compared with the results of the adiabatic approximation.
@article{TMF_1976_28_2_a9,
     author = {E. A. Solov'ev},
     title = {Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {240--249},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/}
}
TY  - JOUR
AU  - E. A. Solov'ev
TI  - Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 240
EP  - 249
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/
LA  - ru
ID  - TMF_1976_28_2_a9
ER  - 
%0 Journal Article
%A E. A. Solov'ev
%T Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 240-249
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/
%G ru
%F TMF_1976_28_2_a9
E. A. Solov'ev. Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 240-249. http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/