Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 240-249
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Models are considered in which a particle moves in the field of two moving zero-range potentials (ZRP). Exact wave functions of the three-dimensional problem are constructed for a special choice of the ZRP trajectories. For a one-dimensional model with two uniformly moving ZRPs, stripping and rearrangement are investigated. Oscillations of a new type in the rearrangement probability are considered. In the adiabatic approximation, a general expression is obtained for these oscillations. The results of numerical calculation are compared with the results of the adiabatic approximation.
			
            
            
            
          
        
      @article{TMF_1976_28_2_a9,
     author = {E. A. Solov'ev},
     title = {Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {240--249},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/}
}
                      
                      
                    TY - JOUR AU - E. A. Solov'ev TI - Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 240 EP - 249 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/ LA - ru ID - TMF_1976_28_2_a9 ER -
E. A. Solov'ev. Rearrangement and stripping in exactly solvable models with allowance for motion of the nuclei. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 240-249. http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a9/
