Equations with homogeneous kernels and Mellin transformation of generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 149-162
Voir la notice de l'article provenant de la source Math-Net.Ru
If an integrodifferential operator $A$ with homogeneous kernel on a half-axis is to be continuous in the space of tempered distributions, it is necessary and sufficient that its kernel satisfy a smoothness condition (Theorem 4, Definition 6). Under this condition, the eigenvalue $A^{-1}(\xi)$ corresponding to the eigenhtaction $x_{+}^{-i\xi}$ has growth not higher than a power as $|\xi|\to\infty$, $|\operatorname{Im}\xi|\leqslant C\infty$. The operator $A$ is normally
solvable if (and only if, under certain restrictions) $A^{-1}(\xi)$ also has growth not higher than a power for the same $\xi$. Expressions (2.12) are obtained for the general solution of the equation $Au=f$ in the form of convergent, i.e., regularized, integrals. The formalism of the Mellin transformation of generalized functions is developed for this purpose.
@article{TMF_1976_27_2_a2,
author = {A. I. Komech},
title = {Equations with homogeneous kernels and {Mellin} transformation of generalized functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--162},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/}
}
TY - JOUR AU - A. I. Komech TI - Equations with homogeneous kernels and Mellin transformation of generalized functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 149 EP - 162 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/ LA - ru ID - TMF_1976_27_2_a2 ER -
A. I. Komech. Equations with homogeneous kernels and Mellin transformation of generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 149-162. http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/