Equations with homogeneous kernels and Mellin transformation of generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 149-162

Voir la notice de l'article provenant de la source Math-Net.Ru

If an integrodifferential operator $A$ with homogeneous kernel on a half-axis is to be continuous in the space of tempered distributions, it is necessary and sufficient that its kernel satisfy a smoothness condition (Theorem 4, Definition 6). Under this condition, the eigenvalue $A^{-1}(\xi)$ corresponding to the eigenhtaction $x_{+}^{-i\xi}$ has growth not higher than a power as $|\xi|\to\infty$, $|\operatorname{Im}\xi|\leqslant C\infty$. The operator $A$ is normally solvable if (and only if, under certain restrictions) $A^{-1}(\xi)$ also has growth not higher than a power for the same $\xi$. Expressions (2.12) are obtained for the general solution of the equation $Au=f$ in the form of convergent, i.e., regularized, integrals. The formalism of the Mellin transformation of generalized functions is developed for this purpose.
@article{TMF_1976_27_2_a2,
     author = {A. I. Komech},
     title = {Equations with homogeneous kernels and {Mellin} transformation of generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/}
}
TY  - JOUR
AU  - A. I. Komech
TI  - Equations with homogeneous kernels and Mellin transformation of generalized functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 149
EP  - 162
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/
LA  - ru
ID  - TMF_1976_27_2_a2
ER  - 
%0 Journal Article
%A A. I. Komech
%T Equations with homogeneous kernels and Mellin transformation of generalized functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 149-162
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/
%G ru
%F TMF_1976_27_2_a2
A. I. Komech. Equations with homogeneous kernels and Mellin transformation of generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 2, pp. 149-162. http://geodesic.mathdoc.fr/item/TMF_1976_27_2_a2/