On the finiteness of the discrete spectrum of the three-particle Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 185-195
Cet article a éte moissonné depuis la source Math-Net.Ru
The Schrödinger operator $H$ of a three-particle system with two-body interactions in considered. Under the assumptions that two-particle subsystems do not possess any negative eigenvalues and one of the subsystems has a virtual state at the lower bound of the continuous spectrum, the proof of the finiteness of discrete spectrum of operator $H$ is performed.
@article{TMF_1975_25_2_a3,
author = {D. R. Yafaev},
title = {On the finiteness of the discrete spectrum of the three-particle {Schr\"odinger} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {185--195},
year = {1975},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a3/}
}
D. R. Yafaev. On the finiteness of the discrete spectrum of the three-particle Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 2, pp. 185-195. http://geodesic.mathdoc.fr/item/TMF_1975_25_2_a3/
[1] D. R. Yafaev, DAN SSSR, 206 (1972), 68
[2] G. M. Zhislin, DAN SSSR, 207 (1972), 25 | Zbl
[3] D. R. Yafaev, Matem. sb., 94 (1974), 567 | MR | Zbl
[4] V. N. Efimov, Phys. Lett., B33 (1970), 563 | DOI
[5] L. D. Faddeev, Trudy MIAN SSSR, 69, 1963 | MR | Zbl
[6] D. R. Yafaev, Matem. voprosy teorii rasprostraneniya voln. 7, Zapiski nauchnykh seminarov LOMI, 51, 1975, 203–216 | Zbl