Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bogoliubov hierarchy of kinetic equations for infinite quantum system of particles distributed in space with mean density $1/v$ and interacting with the model operator of Bardeen–Cooper–Schrieffer, is treated as single abstract equation in a certain countably normed space $b^v$ of sequences of integral operators. The unique solution of the Gauchy problem with arbitrary initial conditions from $b^v$ is obtained, stationary solutions of the equation are constructed and the class of initial conditions is pointed out which approach the stationary solutions in the process of the evolution.
@article{TMF_1975_25_1_a6,
     author = {A. K. Vidybida},
     title = {Cauchy problem for the {Bogolyubov} {(BBGKY)} equations. {The} {BCS} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--59},
     year = {1975},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/}
}
TY  - JOUR
AU  - A. K. Vidybida
TI  - Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 49
EP  - 59
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/
LA  - ru
ID  - TMF_1975_25_1_a6
ER  - 
%0 Journal Article
%A A. K. Vidybida
%T Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 49-59
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/
%G ru
%F TMF_1975_25_1_a6
A. K. Vidybida. Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike. Izbrannye trudy, t. 2, «Naukova dumka», 1970 | MR

[2] G. Gallavotti, Nuovo Cim., 57B (1968), 208 | DOI | Zbl

[3] G. Gallavotti, O. E. Lanford, J. L. Lebowitz, J. Math. Phys., 11 (1970), 9 | DOI | MR

[4] Ya. G. Sinai, Yu. M. Sukhov, TMF, 19 (1974), 3 | MR

[5] S. Fescian, Commun. Math. Phys., 30 (1973), 11 | DOI | MR

[6] D. Ya. Petrina, TMF, 12 (1972), 4

[7] D. Ya. Petrina, A. K. Vidybida, Trudy MIAN SSSR (to appear)

[8] D. Ya. Petrina, TMF, 4 (1970), 394 | MR | Zbl

[9] N. N. Bogolyubov (ml.), Metod issledovaniya modelnykh gamiltonianov, «Nauka», 1974 | MR

[10] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971

[11] C. Y. Shen, D. S. Carter, J. Math. Phys., 12:7 (1970), 1263 | DOI | MR

[12] K. Iosida, Funktsionalnyi analiz, «Mir», 1967 | MR

[13] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», 1972 | MR

[14] M. M. Dei, Normirovannye lineinye prostranstva, «Mir», 1961 | MR

[15] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4, Fizmatgiz, 1961 | MR