Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 49-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The Bogoliubov hierarchy of kinetic equations for infinite quantum system of particles
distributed in space with mean density $1/v$ and interacting with the model operator
of Bardeen–Cooper–Schrieffer, is treated as single abstract equation in a certain
countably normed space $b^v$ of sequences of integral operators. The unique solution of
the Gauchy problem with arbitrary initial conditions from $b^v$ is obtained, stationary
solutions of the equation are constructed and the class of initial conditions is pointed
out which approach the stationary solutions in the process of the evolution.
@article{TMF_1975_25_1_a6,
author = {A. K. Vidybida},
title = {Cauchy problem for the {Bogolyubov} {(BBGKY)} equations. {The} {BCS} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {49--59},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/}
}
A. K. Vidybida. Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 25 (1975) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/TMF_1975_25_1_a6/