Method of solving the BBGKY equations for a Van Der Waals crystal
Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 399-408
Voir la notice de l'article provenant de la source Math-Net.Ru
It is suggested that the stationary distribution functions of the successive approximations
should be searched for in the form of the decomposition over $\delta$-functions and
their derivatives with respect to the particles coordinates. The solutions of the zeroth
and first approximations as well as corresponding expressions for the equations of the
state of the Van der Vaals crystal are given.
@article{TMF_1975_23_3_a12,
author = {I. I. Ol'khovskii},
title = {Method of solving the {BBGKY} equations for a {Van} {Der} {Waals} crystal},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {399--408},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a12/}
}
I. I. Ol'khovskii. Method of solving the BBGKY equations for a Van Der Waals crystal. Teoretičeskaâ i matematičeskaâ fizika, Tome 23 (1975) no. 3, pp. 399-408. http://geodesic.mathdoc.fr/item/TMF_1975_23_3_a12/