Integral representation of the classical $S$ matrix and construction of new uniform approximations
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 364-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral representation of classical $S$-matrix for one-dimensional non-linear non-stationary problem is rigorously deduced, which is valid for all values of quantum numbers, including small ones. Comparison of the quasi classical results with the exact ones for the model of oscillator with the external forces, makes it possible to estimate the error of the method of classical $S$-matrix and its uniform Eiry approximation. Possibilities of constructing new “uniform” approximations, which could be useful in many-dimensional problems of atomic collisions, are discussed.
@article{TMF_1975_22_3_a8,
     author = {M. Ya. Ovchinnikova},
     title = {Integral representation of the classical $S$ matrix and construction of new uniform approximations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--374},
     year = {1975},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a8/}
}
TY  - JOUR
AU  - M. Ya. Ovchinnikova
TI  - Integral representation of the classical $S$ matrix and construction of new uniform approximations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1975
SP  - 364
EP  - 374
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a8/
LA  - ru
ID  - TMF_1975_22_3_a8
ER  - 
%0 Journal Article
%A M. Ya. Ovchinnikova
%T Integral representation of the classical $S$ matrix and construction of new uniform approximations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1975
%P 364-374
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a8/
%G ru
%F TMF_1975_22_3_a8
M. Ya. Ovchinnikova. Integral representation of the classical $S$ matrix and construction of new uniform approximations. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 364-374. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a8/

[1] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, «Mir», 1968

[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1971, str. 224 | Zbl

[3] W. H. Miller, J. Chem. Phys., 53 (1970), 1949 | DOI | MR

[4] W. H. Miller, J. Chem. Phys., 53 (1970), 3578 | DOI | MR

[5] W. H. Miller, Chem. Phys. Lett., 7 (1970), 431 | DOI

[6] W. H. Miller, T. F. George, J. Chem. Phys., 56 (1972), 5668 | DOI

[7] T. F. George, W. H. Miller, J. Chem. Phys., 57 (1972), 2458 | DOI

[8] R. A. Marcus, Chem. Phys. Lett., 7 (1970), 525 ; J. Chem. Phys., 54 (1971), 3965 ; 56 (1972), 311 ; 56 (1972), 3548 | DOI | DOI | DOI | DOI

[9] J. N. L. Connor, R. A. Marcus, J. Chem. Phys., 55 (1971), 5636 | DOI

[10] J. Stine, R. A. Marcus, Chem. Phys. Lett., 15 (1972), 536 | DOI

[11] J. J. Tyson, R. P. Saxon, J. C. Light, J. Chem. Phys., 59 (1973), 363 | DOI

[12] W. H. Miller, J. Chem. Phys., 54 (1971), 5386 | DOI | MR

[13] P. Carruthers, M. Nieto, Rev. Mod. Phys., 40 (1968), 411 ; Kogerentnye sostoyaniya v kvantovoi teorii, «Mir», 1972, 71 | DOI | MR

[14] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd. MGU, 1965 | MR

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. II, «Nauka», 1966 | MR

[16] J. N. L. Connor, Mol. Phys., 25 (1973), 181 | DOI

[17] V. S. Popov, A. M. Perelomov, ZhETF, 56 (1969), 1375

[18] A. M. Perelomov, V. S. Popov, TMF, 3 (1970), 377

[19] W. H. Miller, Adv. Chem. Phys., 25 (1974), 69 | DOI

[20] R. A. Marcus, Far. Disc. Chem. Soc., 55 (1973), 9 | DOI

[21] W. H. Miller, A. W. Raczkowski, Far. Disc. of Chem. Soc., 55 (1973), 45 | DOI

[22] R. A. Marcus, J. Chem. Phys., 59 (1973), 5135 | DOI

[23] J. M. Bowman, A. Kuppermann, J. Chem. Phys., 2 (1973), 158 | DOI | MR

[24] M. Ya. Ovchinnikova, ZhETF, 67 (1974), 1276 | MR

[25] J. R. Stine, R. A. Marcus, J. Chem. Phys., 59 (1973), 5145 | DOI