Phase transitions in systems with long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 343-350
Cet article a éte moissonné depuis la source Math-Net.Ru
Model of magnetic with interaction depending on one parameter only, is considered. The solution at small values of the parameter is obtained for the case of the plane and a special model in three-dimensional volume. Maximal eigen-value of the integral equation, in terms of which the free energy is expressed, becomes degenerate if the temperature is lower than a certain value.
@article{TMF_1975_22_3_a6,
author = {G. V. Klimachev},
title = {Phase transitions in systems with long-range potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {343--350},
year = {1975},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a6/}
}
G. V. Klimachev. Phase transitions in systems with long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 343-350. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a6/
[1] M. Kac, E. Helfand, J. Math. Phys., 4 (1963), 1078 | DOI | MR | Zbl
[2] M. Kac, G. E. Uhlenbeck, P. C. Hemmer, J. Math. Phys., 4 (1963), 229 | DOI | MR | Zbl
[3] F. Daison, E. Montroll, M. Kats, M. Fisher, Ustoichivost i fazovye perekhody, «Mir», 1973 | MR
[4] A. Maradudin, E. Montroll, Dzh. Veis, Dinamicheskaya teoriya kristallicheskikh reshetok v garmonicheskom priblizhenii, «Mir», 1965