Relativistic wave equations and Lagrangian formalism for particles of arbitrary spin
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 320-337
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Relativistic wave equations are obtained that describe a particle of arbitrary spin and parity
and do not contain additional conditions. The fields that satisfy these equations transform
in accordance with finite-dimensional reducible representations of the Lorentz group and
contain principal and auxiliary components. The fields contain the least possible number
of components. On the basis of these equations a Lagrangian formalism is set up and one
can investigate different types of interaction. As an example, the interaction of a particle
with arbitrary spin with the electromagnetic field is considered. For this case the Feynman
rules are written down.
			
            
            
            
          
        
      @article{TMF_1974_20_3_a5,
     author = {V. I. Belinicher},
     title = {Relativistic wave equations and {Lagrangian} formalism for particles of arbitrary spin},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {320--337},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a5/}
}
                      
                      
                    TY - JOUR AU - V. I. Belinicher TI - Relativistic wave equations and Lagrangian formalism for particles of arbitrary spin JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1974 SP - 320 EP - 337 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a5/ LA - ru ID - TMF_1974_20_3_a5 ER -
V. I. Belinicher. Relativistic wave equations and Lagrangian formalism for particles of arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 3, pp. 320-337. http://geodesic.mathdoc.fr/item/TMF_1974_20_3_a5/
