$S$-matrix in quantum electrodynamics with external field
Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 1, pp. 48-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The radiation field being ignored, the evolution operator $S(t)$ for a state of the system is expressed in terms of solutions of the Dirac equation. Since, generally speaking, the operators of creation and annihilation of particles and antiparticles defined in the limit $t\to - \infty$ do not coincide with the corresponding operators in the limit $t\to \infty$ but are related to them by a Bogolyubov transformation, the vacuums of the initial and the final state are different as well. Study of the canonical operator corresponding to the Bogolyubov transformation enables one to refine the proof of the equivalence of the Feynman theory of positrons and the secondquantized theory.
@article{TMF_1974_20_1_a3,
     author = {A. I. Nikishov},
     title = {$S$-matrix in quantum electrodynamics with external field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--56},
     year = {1974},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a3/}
}
TY  - JOUR
AU  - A. I. Nikishov
TI  - $S$-matrix in quantum electrodynamics with external field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 48
EP  - 56
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a3/
LA  - ru
ID  - TMF_1974_20_1_a3
ER  - 
%0 Journal Article
%A A. I. Nikishov
%T $S$-matrix in quantum electrodynamics with external field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 48-56
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a3/
%G ru
%F TMF_1974_20_1_a3
A. I. Nikishov. $S$-matrix in quantum electrodynamics with external field. Teoretičeskaâ i matematičeskaâ fizika, Tome 20 (1974) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/TMF_1974_20_1_a3/

[1] R. P. Feynman, Phys. Rev., 76 (1949), 749 | DOI | MR | Zbl

[2] R. P. Feynman, Phys. Rev., 76 (1949), 769 | DOI | MR | Zbl

[3] A. I. Nikishov, ZhETF, 57 (1969), 1210

[4] N. B. Narozhnyi, A. I. Nikishov, YaF, 11 (1970), 1072

[5] A. I. Nikishov, Nucl. Phys., B21 (1970), 346 | DOI

[6] J. Schwinger, Phys. Rev., 82 (1951), 664 ; 93 (1954), 615 | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. M. Perelomov, Phys. Lett., 39A, 165 ; (1972), 353 | MR | DOI

[8] A. I. Nikishov, Problemy teoreticheskoi fiziki, Sb. pamyati I. E. Tamma, «Nauka», 1972, 299 | MR

[9] A. A. Grib, V. M. Mostepanenko, V. M. Frolov, TMF, 13 (1972), 377

[10] V. P. Oleinik, UFZh, 18 (1973), 105

[11] Y. Nambu, G. Iona-Lasinio, Phys. Rev., 122 (1961), 345 | DOI

[12] G. Barton, Dispersionnye metody v teorii polya, Atomizdat, 1968

[13] N. N. Bogolyubov, V. V. Tolmachev, D. V. Shirkov, Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, 1958

[14] F. Kempfer, Osnovnye polozheniya kvantovoi mekhaniki, «Mir», 1967

[15] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Fizmatgiz, 1959 | MR

[16] N. B. Narozhnyi, A. I. Nikishov, ZhETF, 65 (1973), 862