Relationship between mathematical and physical constants
Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 427-428

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler's formula ($e^{\pi i}=-1$) is used to obtain a relationship between mathematical ($\pi$, $e$, $i=\sqrt{-1}$) and physical ($\varepsilon$, $h$, $c$) constants: $$ \alpha^{-1}=\frac{hc}{\varepsilon^2}= \frac{e^{2\pi}+2e^{-\pi}+4\pi}{4}=137,0361134938\dots. $$
@article{TMF_1974_18_3_a13,
     author = {A. K. Lorents},
     title = {Relationship between mathematical and physical constants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {427--428},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a13/}
}
TY  - JOUR
AU  - A. K. Lorents
TI  - Relationship between mathematical and physical constants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1974
SP  - 427
EP  - 428
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a13/
LA  - ru
ID  - TMF_1974_18_3_a13
ER  - 
%0 Journal Article
%A A. K. Lorents
%T Relationship between mathematical and physical constants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1974
%P 427-428
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a13/
%G ru
%F TMF_1974_18_3_a13
A. K. Lorents. Relationship between mathematical and physical constants. Teoretičeskaâ i matematičeskaâ fizika, Tome 18 (1974) no. 3, pp. 427-428. http://geodesic.mathdoc.fr/item/TMF_1974_18_3_a13/