$SL(2,R)$ symmetry of dual two-particle amplitude
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173
Voir la notice de l'article provenant de la source Math-Net.Ru
Dispersion relations are used to represent the crossing-symmetric scattering amplitude of
two scalar particles as a Mellin integral. The amplitude's duality derives from its being
symmetric under irreducible unitary representations of $SL(2,R)$. The symmetry makes it
possible to find an integral representation for the dual amplitude, this serving to combine
the properties of duality and unitarity.
@article{TMF_1972_13_2_a0,
author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
title = {$SL(2,R)$ symmetry of dual two-particle amplitude},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {145--173},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/}
}
TY - JOUR AU - Kh. D. Popov AU - D. Ts. Stoyanov AU - A. N. Tavkhelidze TI - $SL(2,R)$ symmetry of dual two-particle amplitude JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 145 EP - 173 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/ LA - ru ID - TMF_1972_13_2_a0 ER -
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. $SL(2,R)$ symmetry of dual two-particle amplitude. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/