$SL(2,R)$ symmetry of dual two-particle amplitude
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dispersion relations are used to represent the crossing-symmetric scattering amplitude of two scalar particles as a Mellin integral. The amplitude's duality derives from its being symmetric under irreducible unitary representations of $SL(2,R)$. The symmetry makes it possible to find an integral representation for the dual amplitude, this serving to combine the properties of duality and unitarity.
@article{TMF_1972_13_2_a0,
     author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
     title = {$SL(2,R)$ symmetry of dual two-particle amplitude},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--173},
     year = {1972},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/}
}
TY  - JOUR
AU  - Kh. D. Popov
AU  - D. Ts. Stoyanov
AU  - A. N. Tavkhelidze
TI  - $SL(2,R)$ symmetry of dual two-particle amplitude
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 145
EP  - 173
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/
LA  - ru
ID  - TMF_1972_13_2_a0
ER  - 
%0 Journal Article
%A Kh. D. Popov
%A D. Ts. Stoyanov
%A A. N. Tavkhelidze
%T $SL(2,R)$ symmetry of dual two-particle amplitude
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 145-173
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/
%G ru
%F TMF_1972_13_2_a0
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. $SL(2,R)$ symmetry of dual two-particle amplitude. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/

[1] Z. Koba, H. B. Nielsen, Nucl. Phys., B10 (1969), 633 | DOI

[2] Z. Koba, H. B. Nielsen, Nucl. Phys., B12 (1969), 517 | DOI

[3] E. Donini, S. Sciuto, Ann. Phys., 58 (1970), 388 | DOI

[4] V. A. Matveev, Talk given at the XV Int. Conf. on High Energy Physics, Kiev, 1970

[5] C. D. Popov, D. Ts. Stoyanov, A. N. Tavkhelidze, JINR Preprint E2-6215, 1972

[6] A. N. Kvinikhidze, B. L. Markovski, D. Ts. Stoyanov, A. N. Tavkhelidze, TMF, 6 (1970), 166

[7] A. N. Kvinikhidze, Kh. D. Popov, D. Ts. Stoyanov, A. N. Tavkhelidze, TMF, 9 (1971), 190

[8] S. Mandelstam, Phys. Rev. Lett., 21 (1968), 1724 | DOI

[9] S. Matsuda, Phys. Rev., 185 (1969), 1811 | DOI | MR | Zbl

[10] G. West, Phys. Rev., 185 (1969), 1927 | DOI | MR

[11] A. Martin, Phys. Lett., 29B (1969), 431 | DOI

[12] M. O. Taha, Phys. Rev., D3 (1971), 498

[13] G. Tiktopoulos, Phys. Lett., 31B (1970), 138 | DOI | MR

[14] V. A. Matveev, D. Ts. Stoyanov, A. N. Tavkhelidze, Phys. Lett., 32B (1970), 61 | DOI | MR

[15] A. A. Logunov, L. D. Soloviev, A. N. Tavkhelidze, Phys. Lett., 14B (1967), 181 | DOI

[16] K. Igi, S. Matsuda, Phys. Rev. Lett., 18 (1967), 625 | DOI

[17] V. A. Meshcheryakov, K. V. Rerikh, A. N. Tavkhelidze, V. I. Zhuravlev, Phys. Lett., 25B (1967), 341 | DOI

[18] R. Dolen, D. Horn, C. Schmid, Phys. Rev., 166 (1968), 1768 | DOI

[19] R. Oehme, Nucl. Phys., B16 (1970), 161 ; Preprint IC/70/99 | DOI | Zbl

[20] G. Cohen-Tannoudji, F. Henyey, G. L. Kane, W. J. Zakrzewski, Phys. Rev. Lett., 26 (1971), 112 ; A. I. Bugrij, L. L. Jenkowsky, N. A. Kobylinsky, V. P. Shelest, Preprint ITP-72-23E | DOI

[21] F. Gliozzi, Lett. Nuovo Cim., 2 (1969), 846 | DOI

[22] G. B. Chiu, S. Matsuda, C. Rebbi, Nuovo Cim., 67A (1970), 437 | DOI | MR

[23] D. Amati, M. Le Bellac, D. Olive, Nuovo Cim., 66A (1970), 831 | DOI | MR

[24] K. Akama, Progr. Theor. Phys., 46 (1971), 1869 | DOI | MR | Zbl

[25] H. Matsumoto, Preprint UT-Komaba, 71-24

[26] A. C. T. Wu, J. Math. Phys., 12, 2035 ; (1971), 2036 | DOI | MR | Zbl

[27] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[28] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, vyp. 5, Fizmatgiz, 1962 | MR