$SL(2,R)$ symmetry of dual two-particle amplitude
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173

Voir la notice de l'article provenant de la source Math-Net.Ru

Dispersion relations are used to represent the crossing-symmetric scattering amplitude of two scalar particles as a Mellin integral. The amplitude's duality derives from its being symmetric under irreducible unitary representations of $SL(2,R)$. The symmetry makes it possible to find an integral representation for the dual amplitude, this serving to combine the properties of duality and unitarity.
@article{TMF_1972_13_2_a0,
     author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
     title = {$SL(2,R)$ symmetry of dual two-particle amplitude},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--173},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/}
}
TY  - JOUR
AU  - Kh. D. Popov
AU  - D. Ts. Stoyanov
AU  - A. N. Tavkhelidze
TI  - $SL(2,R)$ symmetry of dual two-particle amplitude
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 145
EP  - 173
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/
LA  - ru
ID  - TMF_1972_13_2_a0
ER  - 
%0 Journal Article
%A Kh. D. Popov
%A D. Ts. Stoyanov
%A A. N. Tavkhelidze
%T $SL(2,R)$ symmetry of dual two-particle amplitude
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 145-173
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/
%G ru
%F TMF_1972_13_2_a0
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. $SL(2,R)$ symmetry of dual two-particle amplitude. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 145-173. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a0/