On groups that correspond to the simplest problems of classical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following questions are discussed: 1) what is the maximum possible complexity of a finite-dimensional group $\mathscr{G}$ of “latent” symmetry? 2) does the existence of a complete set of single-valued integrals of motion always imply the existence of a nontrivial group $\mathscr{G}$? The impossibility of essential extension of the groups $\mathscr{G}$ for known examples is proved; a negative answer is given to the second question.
@article{TMF_1972_11_3_a7,
     author = {\`E. \`E. Shnol'},
     title = {On groups that correspond to the simplest problems of classical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--353},
     year = {1972},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/}
}
TY  - JOUR
AU  - È. È. Shnol'
TI  - On groups that correspond to the simplest problems of classical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 344
EP  - 353
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/
LA  - ru
ID  - TMF_1972_11_3_a7
ER  - 
%0 Journal Article
%A È. È. Shnol'
%T On groups that correspond to the simplest problems of classical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 344-353
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/
%G ru
%F TMF_1972_11_3_a7
È. È. Shnol'. On groups that correspond to the simplest problems of classical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/

[1] E. Noether, Nachr. Göttingen, Math. Phys. Kl., 238 (1918); Variatsionnye printsipy mekhaniki, Sb., Fizmatgiz, 1959 | MR

[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1966 | Zbl

[3] M. I. Petrashen, E. D. Trifonov, Primenenie teorii grupp v kvantovoi mekhanike, «Nauka», 1967

[4] V. I. Arnold, Sib. matem. zhurnal, 4 (1963), 471 | MR

[5] E. E. Shnol, Matem. zametki, 5 (1969), 55 | MR | Zbl

[6] L. S. Pontryagin, Nepreryvnye gruppy, gl. 11, GTTI, 1954 | MR

[7] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, gl. 14, «Nauka», 1970 | MR | Zbl