On groups that correspond to the simplest problems of classical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353

Voir la notice de l'article provenant de la source Math-Net.Ru

The following questions are discussed: 1) what is the maximum possible complexity of a finite-dimensional group $\mathscr{G}$ of “latent” symmetry? 2) does the existence of a complete set of single-valued integrals of motion always imply the existence of a nontrivial group $\mathscr{G}$? The impossibility of essential extension of the groups $\mathscr{G}$ for known examples is proved; a negative answer is given to the second question.
@article{TMF_1972_11_3_a7,
     author = {\`E. \`E. Shnol'},
     title = {On groups that correspond to the simplest problems of classical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--353},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/}
}
TY  - JOUR
AU  - È. È. Shnol'
TI  - On groups that correspond to the simplest problems of classical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 344
EP  - 353
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/
LA  - ru
ID  - TMF_1972_11_3_a7
ER  - 
%0 Journal Article
%A È. È. Shnol'
%T On groups that correspond to the simplest problems of classical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 344-353
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/
%G ru
%F TMF_1972_11_3_a7
È. È. Shnol'. On groups that correspond to the simplest problems of classical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/