On groups that correspond to the simplest problems of classical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353
Voir la notice de l'article provenant de la source Math-Net.Ru
The following questions are discussed: 1) what is the maximum possible complexity of a
finite-dimensional group $\mathscr{G}$ of “latent” symmetry? 2) does the existence of a complete set
of single-valued integrals of motion always imply the existence of a nontrivial group $\mathscr{G}$?
The impossibility of essential extension of the groups $\mathscr{G}$ for known examples is proved; a
negative answer is given to the second question.
@article{TMF_1972_11_3_a7,
author = {\`E. \`E. Shnol'},
title = {On groups that correspond to the simplest problems of classical mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {344--353},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/}
}
È. È. Shnol'. On groups that correspond to the simplest problems of classical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 344-353. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a7/