Relativistic three-body problem in three-dimensional variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 23-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The retarded part of the two-time Green's function of three particles is used to derive equations that determine the relativistic amplitudes of all the sixteen possible transitions in a three-body system. They do not contain relative energies and are a direct relativistic generalization of the Faddeev equations. An equation is also obtained for the relativistic analog of the wave function of the three-particle bound state.
@article{TMF_1972_11_1_a3,
     author = {A. N. Kvinikhidze and D. Ts. Stoyanov},
     title = {Relativistic three-body problem in three-dimensional variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--36},
     year = {1972},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a3/}
}
TY  - JOUR
AU  - A. N. Kvinikhidze
AU  - D. Ts. Stoyanov
TI  - Relativistic three-body problem in three-dimensional variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 23
EP  - 36
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a3/
LA  - ru
ID  - TMF_1972_11_1_a3
ER  - 
%0 Journal Article
%A A. N. Kvinikhidze
%A D. Ts. Stoyanov
%T Relativistic three-body problem in three-dimensional variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 23-36
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a3/
%G ru
%F TMF_1972_11_1_a3
A. N. Kvinikhidze; D. Ts. Stoyanov. Relativistic three-body problem in three-dimensional variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a3/

[1] E. Salpeter, H. Bethe, Phys. Rev., 84 (1951), 1232 | DOI | MR | Zbl

[2] D. Ts. Stoyanov, A. N. Tavkhelidze, Phys. Lett., 13 (1964), 76 | DOI | MR

[3] V. P. Shelest, D. Ts. Stoyanov, Phys. Lett., 13 (1964), 253 | DOI | MR

[4] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR

[5] V. A. Alessandrini, R. L. Omnes, Phys. Rev., 139 (1965), B167 | DOI | MR

[6] R. Blankenbecler, R. Sugar, Phys. Rev., 142 (1966), 1051 | DOI | MR

[7] D. Z. Freedman, C. Lovelace, J. M. Namyslowski, Nuovo Cim., 43 (1966), A258 | DOI

[8] V. A. Matveev, R. M. Muradyan, A. N. Tavkhelidze, Preprint P2-3900, OIYaI, 1968

[9] R. N. Faustov, TMF, 3 (1970), 240

[10] V. G. Kadyshevsky, Nucl. Phys., B6 (1968), 125 | DOI

[11] V. M. Vinogradov, Preprint P2 - 5099; Препринт P2 - 5100; Препринт P2 - 5101, ОИЯИ, 1970 | MR

[12] A. N. Kvinikhidze, D. Ts. Stoyanov, TMF, 3 (1970), 332

[13] L. D. Faddeev, ZhETF, 39 (1960), 1459 ; Л. Д. Фаддеев, ДАН СССР, 138 (1961), 565 ; 145 (1962), 301 ; Л. Д. Фаддеев, Тр. Матем. института им. В. А. Стеклова, No 69, 1963 | MR | MR | MR | Zbl

[14] C. Lovelace, Scottish Universities Summer School, Edinburgh, 1963, 437; C. Lovelace, Phys. Rev., 135 (1964), B1225 | DOI | MR

[15] A. N. Kvinikhidze, D. Ts. Stoyanov, Preprint E2-5746, OIYaI, 1971 | MR

[16] A. A. Khelashvili, Preprint P2-3371, OIYaI, 1967 | MR