Energy spectrum of a disordered linear chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 130-133

Voir la notice de l'article provenant de la source Math-Net.Ru

Dyson's treatment of the energy spectrum of a disordered linear chain [1] is generalized to the case when there is a correlation between nearest neighbors. An integral equation is obtained that relates the density of states of the chain to the conditional probability that characterizes the short-range order in the system.
@article{TMF_1972_11_1_a13,
     author = {D. I. Khomskii},
     title = {Energy spectrum of a disordered linear chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--133},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a13/}
}
TY  - JOUR
AU  - D. I. Khomskii
TI  - Energy spectrum of a disordered linear chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 130
EP  - 133
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a13/
LA  - ru
ID  - TMF_1972_11_1_a13
ER  - 
%0 Journal Article
%A D. I. Khomskii
%T Energy spectrum of a disordered linear chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 130-133
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a13/
%G ru
%F TMF_1972_11_1_a13
D. I. Khomskii. Energy spectrum of a disordered linear chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 130-133. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a13/