Relativistic three-body problem in relative variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 338-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lorentz covariant three-body theory is constructed in the momentum representation in the framework of the three-dimensional formulation of quantum field theory. Relativistic Jacobian momenta are introduced by means of the operation of composition of four-vectors in Lobachevskii space. It is shown that the cms motion can be separated out and the problem is formulated solely in relative variables as a direct generalization of the nonrelativistic theory. Three-dimensional relativistic analogs are obtained of the Faddeev equations for the scattering amplitude and also an analog of the Schrödinger equation in relative variables for a three-body system. The formulation satisfies three-particle unitarity and the correspondence principle.
@article{TMF_1972_10_3_a2,
     author = {V. M. Vinogradov},
     title = {Relativistic three-body problem in relative variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--348},
     year = {1972},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/}
}
TY  - JOUR
AU  - V. M. Vinogradov
TI  - Relativistic three-body problem in relative variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 338
EP  - 348
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/
LA  - ru
ID  - TMF_1972_10_3_a2
ER  - 
%0 Journal Article
%A V. M. Vinogradov
%T Relativistic three-body problem in relative variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 338-348
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/
%G ru
%F TMF_1972_10_3_a2
V. M. Vinogradov. Relativistic three-body problem in relative variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 338-348. http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/

[1] V. M. Vinogradov, TMF, 8 (1971), 343

[2] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 390 | DOI | MR

[3] V. G. Kadyshevskii, A. N. Tavkhelidze, Problemy teoreticheskoi fiziki, «Nauka», 1969 | MR

[4] V. G. Kadyshevskii, ZhETF, 46 (1964), 654 ; В. Г. Кадышевский, ЖЭТФ, 46 (1964), 872 ; В. Г. Кадышевский, ДАН СССР, 160 (1965), 573 | MR | MR | MR

[5] L. D. Faddeev, ZhETF, 39 (1960), 1459 ; Л. Д. Фаддеев, Труды математического института им. В. А. Стеклова, 69, изд. АН СССР, 1963 | MR | MR | Zbl

[6] D. Tz. Stoyanov, A. N. Tavkhelidze, Phys. Lett., 13 (1964), 76 | DOI | MR

[7] V. A. Allessandrini, R. L. Omnes, Phys. Rev., 142 (1966), 1051 | DOI | MR

[8] R. Blankenbekler, R. Sugar, Phys. Rev., 142 (1966), 1051 | DOI | MR

[9] D. Z. Freedman, C. Lovelace, I. M. Namyslowski, Nuovo Cim., 43 (1966), A253 | DOI

[10] I. Duck, Advances in Nuclear Physics, v. 1, Soderzhit obzor rabot po teorii trekh tel, Plenum Press, New York, 1968; K. N. Watson, I. Nuttal, Topics in several Particle Dunamics, Содержит обзор работ по теории трех тел, San Francisco, Calif., 1967

[11] V. A. Matveev, R. M. Muradyan, A. N. Tavkhelidze, Preprint P2-3900, OIYaI, 1969

[12] A. N. Kvinikhidze, D. Ts. Stoyanov, TMF, 3 (1970), 332

[13] V. G. Kadyshevskii, DAN SSSR, 147 (1962), 588

[14] V. G. Kadyshevsky, Nucl. Phys., B6 (1969), 125 ; V. G. Kadyshevsky, M. D. Mateev, Nuovo Cim., 55A (1968), 275 | DOI

[15] V. M. Vinogradov, TMF, 7 (1971), 389

[16] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, EChAYa, 2, no. 3, Atomizdat, 1971

[17] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cim., 55A (1968), 223

[18] V. G. Kadyshevskii, M. D. Mateev, R. M. Mir-Kasimov, YaF, 11 (1970), 692

[19] R. Omnes, Phys. Rev., 134 (1964), B1358 | DOI | MR

[20] C. Lovelace, Phys. Rev., 135 (1964), B1225 | DOI | MR

[21] A. Ahmadzaden, J. Tjon, Phys. Rev., 139 (1965), B1085 | DOI