Relativistic three-body problem in relative variables
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 338-348
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Lorentz covariant three-body theory is constructed in the momentum representation in
the framework of the three-dimensional formulation of quantum field theory. Relativistic
Jacobian momenta are introduced by means of the operation of composition of four-vectors
in Lobachevskii space. It is shown that the cms motion can be separated out and the problem is formulated solely in relative variables as a direct generalization of the nonrelativistic
theory. Three-dimensional relativistic analogs are obtained of the Faddeev equations for
the scattering amplitude and also an analog of the Schrödinger equation in relative variables
for a three-body system. The formulation satisfies three-particle unitarity and the correspondence principle.
			
            
            
            
          
        
      @article{TMF_1972_10_3_a2,
     author = {V. M. Vinogradov},
     title = {Relativistic three-body problem in relative variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {338--348},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/}
}
                      
                      
                    V. M. Vinogradov. Relativistic three-body problem in relative variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 338-348. http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a2/