Higher correlation functions of the Ising ferromagnet. The case of a linear model for spin $S=1/2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 3, pp. 401-412
Cet article a éte moissonné depuis la source Math-Net.Ru
The Ising problem tor the spin $S\geqslant 1/2$ is solved by means of the two-time Green function method. It is shown that the chains of the coupled equations for Green functions are reduced to the closed systems of $L=2SP+1$ equations, $P$ being the coordination number of the lattice. The Green functions for $L=3,5,7,9,11$, found from these equations, make it possible to obtain sets of exact relationships for correlation functions. It is shown that these relationships lead to the complete solution of a dynamical problem in the case of a linear model $S=1/2$ (the two-particle and many-particle correlators are found) with various boundary conditions: the infinite chain of spins, the spin chain closed in a ring and the finite spin chain with fixed states of boundary spins.
@article{TMF_1971_8_3_a11,
author = {M. P. Zhelifonov},
title = {Higher correlation functions of the {Ising} ferromagnet. {The} case of a~linear model for spin $S=1/2$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {401--412},
year = {1971},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_3_a11/}
}
TY - JOUR AU - M. P. Zhelifonov TI - Higher correlation functions of the Ising ferromagnet. The case of a linear model for spin $S=1/2$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 401 EP - 412 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1971_8_3_a11/ LA - ru ID - TMF_1971_8_3_a11 ER -
M. P. Zhelifonov. Higher correlation functions of the Ising ferromagnet. The case of a linear model for spin $S=1/2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 3, pp. 401-412. http://geodesic.mathdoc.fr/item/TMF_1971_8_3_a11/
[1] S. V. Tyablikov, V. K. Fedyanin, FMM, 23 (1967), 193
[2] S. V. Tyablikov, V. K. Fedyanin, FMM, 26 (1968), 589
[3] T. Oguchi, I. Ono, Progr. Theor. Phys., 35 (1966), 988 | DOI
[4] K. C. Lee, R. Barrie, Canad. J. Phys., 47 (1969), 769 | DOI
[5] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, «Nauka», 1965 | MR
[6] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR
[7] V. K. Fedyanin, FMM, 26 (1968), 968
[8] S. I. Kubarev, O. A. Ponomarev, FMM, 25 (1968), 977
[9] O. K. Kalashnikov, E. S. Fradkin, ZhETF, 55 (1968), 1845