Phase space invariance groups and relativistic three-particle states
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 1, pp. 85-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach is proposed to the problem of the classification of the states of three relativistic particles. The method is based on the idea of the existence of a finite group $H$ of transformations that leave invariant not only the equation of the energy surface but also the element of the relativistic three-particle phase volume. Equations are found that determine a one-parametric subgroup of $H$ and, in the case of three identical particles, the group itself is found. An important feature of this group is the fact that the exchange of particles is a particular clement of the group. The Lie algebra of the generators of $H$ are used to construct a complete set of commuting Hermitian operators, including the exchange operator. A complete orthonormalized system of states is obtained; it possesses the necessary symmetry propertics under exchange. The kinematic variables used in the problem map the physical region of the Dalitz plot onto a ring.
@article{TMF_1971_8_1_a8,
     author = {G. Yu. Bogoslovskii},
     title = {Phase space invariance groups and relativistic three-particle states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {85--96},
     year = {1971},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a8/}
}
TY  - JOUR
AU  - G. Yu. Bogoslovskii
TI  - Phase space invariance groups and relativistic three-particle states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 85
EP  - 96
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a8/
LA  - ru
ID  - TMF_1971_8_1_a8
ER  - 
%0 Journal Article
%A G. Yu. Bogoslovskii
%T Phase space invariance groups and relativistic three-particle states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 85-96
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a8/
%G ru
%F TMF_1971_8_1_a8
G. Yu. Bogoslovskii. Phase space invariance groups and relativistic three-particle states. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a8/

[1] F. T. Smith, Phys. Rev., 120 (1960), 1058 | DOI | MR | Zbl

[2] L. M. Delves, Nucl. Phys., 20 (1960), 275 | DOI

[3] Z. Koba, Phys. Lett., 1 (1962), 34 | DOI | MR

[4] A. J. Dragt, J. Math. Phys., 6 (1965), 533 | DOI | MR

[5] R. B. Gorelik, N. P. Klepikov, V. A. Yudin, YaF, 1 (1965), 152

[6] W. Zickendraht, Ann. of Phys., 35 (1965), 18 | DOI | MR

[7] J. M. Levy-Leblond, M. Levy-Nahas, J. Math. Phys., 6 (1965), 1571 | DOI | MR

[8] Yu. A. Simonov, YaF, 3 (1966), 630 | MR

[9] V. V. Pustovalov, Yu. A. Simonov, ZhETF, 51 (1966), 345 | Zbl

[10] Yu. Niri, Ya. A. Smorodinskii, YaF, 9 (1969), 882

[11] J. Nyiri, Ya. A. Smorodinsky, Preprint E2-4809, JINR, 1969

[12] G. C. Wick, Ann. of Phys., 18 (1962), 65 | DOI | MR | Zbl

[13] A. J. Macfarlane, Rev. Mod. Phys., 34 (1962), 41 | DOI | MR | Zbl

[14] F. R. Halpern, Phys. Rev., 137 (1965), B 1587 | DOI

[15] G. Yu. Bogoslovskii, N. P. Klepikov, YaF, 5 (1967), 1126

[16] G. Yu. Bogoslovskii, Preprint NIIYaF MGU, 1970

[17] E. T. Uitteker, Dzh. Vatson, Kurs sovremennogo analiza, ch. II, Fizmatgiz, 1963

[18] E. Fabri, Nuovo Cim., 11 (1954), 479 | DOI | Zbl

[19] I. M. Narodetskii, YaF, 7 (1968), 418 | MR

[20] E. Vigner, Teoriya grupp, IL, 1961